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call for industrial renewal. The general call is urgent as we face profound is
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and research monographs intended to address the need for information in 
contemporary areas of mechanical engineering. 
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editors on the advisory board, each an expert in one the areas of concentra
tion. The names of the consulting editors are listed on the next page of this 
volume. The areas of concentration are: applied mechanics; biome chan
ics; computational mechanics; dynamic systems and control; energetics; 
mechanics of materials; processing; thermal science; and tribology. 
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Preface 

No todos los pensamientos son algoritmicos. 

-Mario Bunge1 

The beginnings of modern robotics can be traced back to the late sixties 
with the advent of the microprocessor, which made possible the computer 
control of a multiaxial manipulator. Since those days, robotics has evolved 
from a technology developed around this class of manipulators for the re
playing of a preprogrammed task to a multidiscipline encompassing many 
branches of science and engineering. Research areas such as computer vi
sion, artificial intelligence, and speech recognition play key roles in the 
development and implementation of robotics; these are, in turn, multidis
ciplines supported by computer science, electronics, and control, at their 
very foundations. Thus we see that robotics covers a rat her broad spec
trum of knowledge, the scope of this book being only a narrow band of this 
spectrum, as outlined below. 

Contemporary robotics aims at the design, control, and implementation 
of systems capable of performing a task defined at a high level, in a lan
guage resembling those used by humans to communicate among themselves. 
Moreover, robotic systems can take on forms of all kinds, ranging from the 
most intangible, such as interpreting images collected by aspace sound, to 
the most concrete, such as cutting tissue in a surgical operation. We can, 

1 Not all thinking processes are algorithmic-translation of the author
personal communication during the Symposium on the Bmin-Mind Problem. A 
1hbute to Professor Mario Bunge on His 75th Birthday, Montreal, September 
30, 1994. 
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therefore, notice that motion is not essential to a robotic system, for this 
system is meant to replace humans in many of their activities, moving being 
but one of them. However, since robots evolved from early programmable 
manipulators, one tends to identify robots with motion and manipulation. 
Certainly, robots may rely on a mechanical system to perform their in
tended tasks. When this is the case, we can speak of robotic mechanical 
systems, which are the subject of this book. These tasks, in turn, can be 
of a most varied nature, mainly involving motions such as manipulation, 
but they can also involve locomotion. Moreover, manipulation can be as 
simple as displacing objects from a belt conveyor to a magazine. On the 
other hand, manipulation can also be as complex as displacing these objects 
while observing constraints on both motion and force, e.g., when cutting 
live tissue of vital organs. We can, thus, distinguish between plain manipu
lation and dextrous manipulation. Furthermore, manipulation can involve 
locomotion as well. 

The task of a robotic mechanical system is, hence, intimately related 
to motion control, which warrants a detailed study of mechanical systems 
as elements of a robotic system. The aim of this book can, therefore, be 
stated as establishing the foundations on which the design, control, and 
implementation of robotic mechanical systems are based. 

The book evolved from sets of lecture notes developed at McGill Uni
versity over the last twelve years, while I was teaching a two-semester se
quence of courses-on robotic mechanical systems. For this reason, the book 
comprises two parts, an introductory and an intermediate part on robotic 
mechanical systems. Advanced topics, such as redundant manipulators, ma
nipulators with flexible links and joints, and force control, are omitted. The 
feedback control of robotic mechanical systems is also omitted, although 
the book refers the reader, when appropriate, to the specialized literature. 
An aim of the book is to serve as a textbook in a one-year robotics course; 
another aim is to serve as a reference to the practicing engineer. 

The book assurnes some familiarity with the mathematics taught in any 
engineering or science curriculum in the first two years of college. Familiar
ity with elementary mechanics is helpful, but not essential, for the elements 
of this science needed to understand the mechanics of robotic systems are 
covered in the first three chapters, thereby making the book self-contained. 
These three chapters, moreover, are meant to introduce the reader to the 
notation and the basics of mathematics and rigid-body mechanics needed 
in the study of the systems at hand. The material covered in the same 
chapters can thus serve as reading material for a course on the mathemat
ics of robotics, intended for sophomore students of science and engineering, 
prior to a more formal course on robotics. 

The first chapter is intended to give the reader an overview of the subject 
matter and to highlight the major issues in the real m of robotic mechanical 
systems. Chapter 2 is devoted to notation, nomenclature, and the basics of 
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linear transformations to understand best the essence of rigid-body kine
matics, an area that is covered in great detail throughout the book. A 
unique feature of this chapter is the discussion of the hand-eye calibration 
problem: Many a paper has been written in an attempt to solve this fun
damental problem, always leading to a cumbersome solution that invokes 
nonlinear-equation solving, a task that invariably calls for an iterative pro
cedure; moreover, within each iteration, a singular-value decomposition, 
itself iterative as well, is required. In Chapter 2, a novel approach is in
troduced, that resorts to invariant properties of rotations and leads to a 
direet solution, involving straightforward matrix and vector multiplications. 
Chapter 3 reviews, in turn, the basic theorems of rigid-body kinetostatics 
and dynamies. The viewpoint here represents a major departure from most 
existing books on robotic manipulators: proper orthogonal matrices can be 
regarded as co ordinate transformations indeed, but they can also be re
garded as representations, once a co ordinate frame has been selected, of 
rigid-body rotations. I adopt the latter viewpoint, and hence, fundamental 
concepts are explained in terms of their invariant properties, i.e., proper
ties that are independent of the co ordinate frame adopted. Hence, matrices 
are used first and foremost to represent the physical motions undergone by 
rigid bodies and systems thereof, and are to be interpreted as such when 
studying the basics of rigid-body mechanics in this chapter. Chapter 4 is 
the first chapter entirely devoted to robotic mechanical systems, properly 
speaking. This chapter covers extensively the kinematics of robotic ma
nipulators of the serial type. However, as far as displacement analysis is 
concerned, the chapter limits itself to the simplest robotic manipulators, 
namely, those with a deeoupled arehiteeture, i.e., those that can be decom
posed into a regional arehiteeture for the positioning of one point of their 
end-effector (EE), and a loeal arehiteeture for the orientation of their EE. 
In this chapter, the notation of Denavit and Hartenberg is introduced and 
applied consistently throughout the book. Jacobian matrices, workspaces, 
singularities, and kinetostatic performance indices are concepts studied in 
this chapter. A novel algorithm is included for the determination of the 
workspace boundary of positioning manipulators. Furthermore, Chapter 5 
is devoted to the topic of trajectory planning, while limiting its scope to 
problems suitable to a first course on robotics; this chapter thus focuses on 
pick-and-place operations. Chapter 6, moreover, introduces the dynamics 
of robotic manipulators of the serial type, while discussing extensively the 
recursive Newton-Euler algorithm and laying the foundations of multibody 
dynamies, with an introduction to the Euler-Lagrange formulation. The 
latter is used to derive the general algebraic structure of the mathematical 
models of the systems under study, thus completing the introductory part 
of the book. 

The intermediate part comprises four chapters. Chapter 7 is devoted to 
the increasingly important problem of determining the angular velocity and 
the angular acceleration of a rigid body, when the velo city and acceleration 
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of a set of its points are known. Moreover, given the intermediate level of 
the chapter, only the theoretical aspects of the problem are studied, and 
hence, perfect measurements of point position, velocity, and acceleration 
are assumed, thereby laying the foundations for the study of the same 
problems in the presence of noisy measurements. This problem is finding 
applications in the control of parallel manipulators, which is the reason 
why it is included here. If time constraints so dietate, this chapter can be 
omitted, for it is not needed in the balance of the book. 

The formulation of the inverse kinematies of the most general robotic ma
nipulator of the serial type, leading to a monovariate polynomial of the 16th 
degree, not discussed in previous books on roboties, is included in Chap
ter 8. Likewise, the direct kinematics of the platform manipulator popularly 
known as the Stewart platform, a.k.a. the Stewart-Gough platform, leading 
to a 16th-degree monovariate polynomial, is also given due attention in this 
chapter. Moreover, an alternative approach to the monovariate-polynomial 
solution of the two foregoing problems, that is aimed at solving them sem
igraphically, is introduced in this chapter. With this approach, the under
lying multivariate algebraic system of equations is reduced to a system of 
two nonlinear bivariate equations that are trigonometrie rather than poly
nomial. Each of these two equations, then, leads to a contour in the plane 
of the two variables, the desired solutions being found as the coordinates 
of the intersections of the two contours. 

Discussed in Chapter 9 is the problem of trajectory planning as per
taining to continuous paths, whieh calls for some concepts of differential 
geometry, namely, the Frenet-Serret equations relating the tangent, nor
mal, and binormal vectors of a smooth curve to their rates of change with 
respect to the arc length. The chapter relies on cubie parametric splines 
for the synthesis of the generated trajectories in joint space, starting from 
their descriptions in Cartesian space. Finally, Chapter 10 completes the 
discussion initiated in Chapter 6, with an outline of the dynamies of paral
lel manipulators and rolling robots. Here, a multibody dynamies approach 
is introduced, as in the foregoing chapter, that eases the formulation of the 
underlying mathematieal models. 

Two appendiees are included: Appendix A summarizes aseries of facts 
from the kinematics of rotations, that are available elsewhere, with the 
purpose of rendering the book self-contained; Appendix B is devoted to the 
numerieal solution of over- and underdetermined linear algebraic systems, 
its purpose being to guide the reader to the existing robust techniques for 
the computation of least-square and minimum-norm solutions. The book 
concludes with a set of problems, along with a list of references, for all ten 
chapters. 
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On Notation 

The important issue of notation is given due attention. In figuring out the 
notation, I have adopted what I call the C3 norm. Under this norm, the 
notation should be 

1. Comprehensive, 

2. Concise, and 

3. Consistent. 

Within this norm, I have used boldface fonts to indicate vectors and 
matrices, with uppercases reserved for matrices and lowercases for vectors. 
In compliance with the invariant approach adopted at the outset, I do not 
regard vectors solely as arrays, but as geometric or mechanical objects. 
Regarding such objects as arrays is necessary only when it is required to 
perform operations with them for a specific purpose. An essential feature 
of vectors in a discussion is their dimension, which is indicated with a 
single number, as opposed to the convention whereby vectors are regarded 
as matrix arrays of numbers; in this convention, the dimension has to be 
indicated with two numbers, one for the number of columns, and one for the 
number of rows; in the case of vectors, the latter is always one, and hence, 
need not be mentioned. Additionally, calligraphic literals are reserved for 
sets of points or of other objects. Since variables are defined every time that 
they are introduced, and the same variable is used in the book to denote 
different concepts in different contexts, a list of symbols is not included. 

How to U se the Book 

The book can be used as a reference or as a text for the teaching of the 
mechanics of robots to an audience that ranges from junior undergraduates 
to doctoral students. In an introductory course, the instructor may have 
to make choices regarding what material to skip, given that the duration 
of a regular semester does not allow to cover all that is included in the 
first six chapters. Topics that can be skipped, if time so dictates, are the 
discussions, in Chapter 4, of workspaces and performance indices, and the 
section on simulation in Chapter 6. Under strict time constraints, the whole 
Chapter 5 can be skipped, but then, the instructor will have to refrain 
from assigning problems or projects that include cakulating the inverse 
dynamics of a robot performing pick-and-place operations. None of these 
has been included in Section 6 of the Exercises. 

If sections of Chapters 4 and 5 have been omitted in a first course, it is 
highly advisable to include them in a second course, prior to discussing the 
chapters included in the intermediate part of the book. 
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1 
An Overview of Robotic 
Mechanical Systems 

1.1 Introd uction 

In defining the scope of our subject, we have to establish the genealogy of 
robotic mechanical systems. These are, obviously, a subclass of the much 
broader class of mechanical systems. Mechanical systems, in turn, consti
tute a subset of the more general concept of dynamic systems. Therefore, 
in the final analysis, we must have an idea of what a system, in general, iso 

The Concise Oxford Dictionary defines system as a "complex whole, set 
of connected things or parts, organized body of material or immaterial 
things", whereas the Random House College Dictionary defines the same 
as "an assemblage or combination of things or parts forming a complex 
or unitary whole." Le Petit Robert, in turn, defines system as "Ensem
ble possedant une structure, constituant un tout organique", which can 
be loosely translated as "A structured assemblage constituting an organic 
whole." In the foregoing definitions, we note that the underlying idea is 
"hat of a set of elements interacting as a whole. 

On the other hand, adynamie system is a subset of the set of systems. 
For our purposes, we can dispense with a rigorous definition of this concept. 
Suffice it to say that adynamie system is a system in which one can distin
guish three elements, namely, astate, an input, and an output, in addition 
to a rule of transition from one current state to a future one. Moreover, 
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the state is a junctional of the input and a function of a previous state. In 
this concept, then, the idea of order is important, and can be taken into 
account by properly associating each state value with time. The state at 
every instant is a functional, as opposed to a function, of the input, which is 
characteristic of dynamic systems. This me ans that the state of a dynamic 
system at a certain instant is determined not only by the value of the input 
at that instant, but also by the past history of that input. By virtue of this 
property, dynamic systems are said to have memory. 

On the contrary, systems whose state at a given instant is only a junction 
of the input at the current time are static and are said to have no memory. 
Additionally, since the state of a dynamic system is a result of all the past 
history of the input, the future values of this having no influence on the 
state, dynamic systems are said to be nonanticipative or causal. By the 
same token, systems whose state is the result of future values of the input 
are said to be anticipative or noncausal. In fact, we will not need to worry 
about the latter, and hence, all systems we will study can be assumed to 
be causal. 

Obviously, a mechanical system is a system composed of mechanical ele
ments. If this system complies with the definition of dynamic system, then 
we end up with adynamie mechanical system. For brevity, we will refer to 
such systems as mechanical systems, the dynamic property being taken for 
granted throughout the book. Mechanical systems of this type are those 
that occur whenever the inertia of their elements is accounted for. Static 
mechanical systems are those in which inertia is neglected. Moreover, the 
elements constituting a mechanical system are rigid and deformable solids, 
compressible and incompressible fluids, and inviscid and viscous fluids. 

From the foregoing discussion, then, it is apparent that mechanical sys
tems can be constituted either by lumped-parameter or by distributed
parameter elements. The former reduce to particles; rigid bodies; massless, 
conservative springs; and massless, nonconservative dashpots. The latter 
appear whenever bodies are modeled as continuous media. In this book, we 
will focus on lumped-parameter mechanical systems. 

Furthermore, a mechanical system can be either natural or man-made, 
the latter being the subject of our study. Man-made mechanical systems 
can be either controlled or uncontrolled. Most engineering systems are con
trolled mechanical systems, and hence, we will focus on these. Moreover, 
a controlled mechanical system may be robotic or nonrobotic. The lat
ter are systems supplied with primitive controllers, mostly analog, such 
as thermostats, servovalves, etc. Robotic mechanical systems, in turn, can 
be programmable, such as most current industrial robots, or intelligent, 
as discussed below. Programmable mechanical systems obey motion com
mands either stored in a memory device or generated on-line. In either 
case, they need primitive sensors, such as joint encoders, accelerometers, 
and dynamometers. 
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Intelligent robots or, more broadly speaking, intelligent machines, are 
yet to be demonstrated, but have become the focus of intensive research. 
If intelligent machines are ever feasible, they will depend highlyon a so
phisticated sensory system and the associated hardware and software for 
the processing of the information supplied by the sensors. The processed 
information would then be supplied to the actuators in charge of producing 
the desired motion of the robot. Contrary to programmable robots, whose 
operation is limited to structured environments, intelligent machines should 
be capable of reacting to unpredictable changes in an unstructured environ
ment. Thus, intelligent machines should be supplied with decision-making 
capabilities aimed at mimicking the natural decision-making process of liv
ing organisms. This is the reason why such systems are termed intelligent 
in the first place. Thus, intelligent machines are expected to perceive their 
environment and draw conclusions based on this perception. What is sup
posed to make these systems intelligent is their capability of perceiving, 
which involves a certain element of subjectivity. By far, the most complex 
of perception tasks, both in humans and machines, is visual (Levine, 1985; 
Horn, 1986). 

In summary, then, an intelligent machine is expected to (i) perceive the 
environment; (ii) reason about the perceived information; (iii) make deci
sions based on this perception; and (iv) act according to a plan specified at 
a very high level. What the latter means is that the motions undergone by 
the machine are decided upon based on instructions similar to those given 
to a human being, like bring me a glass of water without spilling the water. 

Whether intelligent machines with all the above features will be one day 
possible or not is still a subject of discussion, sometimes at a philosophical 
level. Penrose (1994) wrote a detailed discussion refuting the claim that 
intelligent machines are possible. 

A genealogy of mechanical systems, including robotic ones, is given in 
Fig. 1.1. In that figure, we have drawn a dashed line between mechan
ical systems and other systems, both man-made and natural, in order 
to emphasize the interaction of mechanical systems with electrical, ther
mal, and other systems, including the human system, which is present in 
telemanipulators, to be discussed below. 

1.2 The General Structure of Robotic Mechanical 
Systems 

From Section 1.1, then, a robotic mechanical system is composed of a few 
subsystems, namely, (i) a mechanical subsystem composed in turn of both 
rigid and deformable bodies, although the systems we will study here are 
composed only of the former; (ii) a sensing subsystem; (iii) an actuation 
subsystem; (iv) a controller; and (v) an information-processing subsystem. 
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FIGURE 1.1. A genealogy of robotic mechanical systems. 

Additionally, these subsystems communicate among themselves via inter
faces, whose function consists basically of decoding the transmitted infor
mation from one medium to another. Figure 1.2 shows a block-diagram 
representation of a typical robotic mechanical system. Its input is a pre
scribed task, which is defined either on the spot or off-line. The former case 
is essential for a machine to be called intelligent, while the latter is present 
in programmable machines. Thus, tasks would be described to intelligent 
machines by a software system based on techniques of artificial intelligence 
(AI). This system would replace the human being in the decision-making 
process. Programmable robots require human intervention either for the 
coding of preprogrammed tasks at a very low level or for telemanipulation. 
A very low level of programming means that the motions of the machine are 
specified as a sequence of either joint motions or Cartesian coordinates as
sociated with landmark points of that specific body performing the task at 
hand. The output of a robotic mechanical system is the actual task, which 
is monitored by the sensors. The sensors, in turn, transmit task information 
in the form of feedback signals, to be compared with the prescribed task. 
The errors between the prescribed and the actual task are then fed back 
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FIGURE 1.2. Block diagram of a general robotic mechanical system. 

into the controller, which then synthesizes the necessary corrective signals. 
These are, in turn, fed back into the actuators, which then drive the me
chanical system through the required task, thereby closing the loop. The 
problem of robot control has received extensive attention in the literature, 
and will not be pursued here. The interested reader is referred to the ex
cellent works on the subject, e.g., those of Samson, Le Borgne, and Espiau 
(1991) and, at a more introductory level, of Spong and Vidyasagar (1989). 
Of special relevance to robot control is the subject of nonlinear control at 
large, a pioneer here being Isidori (1989). 

Robotic mechanical systems with a human being in their control loop 
are called telemanipulators. Thus, a telemanipulator is a robotic mechan
ical system in which the task is controlled by a human, possibly aided 
by sophisticated sensors and display units. The human operator is then a 
central element in the block diagram loop of Fig. 1.2. Based on the infor
mation displayed, the operator makes decisions about corrections in order 
to accomplish the prescribed task. Shown in Fig. 1.3 is a telemanipulator to 
be used in space applications, namely, the Space Station Remote M anipula
tor System, along with the Special Purpose Dextrous Manipulator (SPDM), 
both mounted on the Mobile Servicing System (MSS). Moreover, a detailed 
view of the SPDM is shown in Fig. 1.4. In the manipulators of these two fig
ures, the human operator is an astronaut who commands and monitors the 
motions of the robot from inside the EVA (extravehicular activity) work
station. The number of controlled axes of each of these manipulators being 
larger than six, both are termed redundant. The challenge here is that the 
mapping from task coordinates to joint motions is not unique, and hence, 
among the infinitely many joint trajectories that the operator has at his or 
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FIGURE 1.3. Space Station Remote Manipulator System and Special-Purpose 
Dextrous Manipulator (courtesy of the Canadian Space Agency.) 

her disposal for a given task, an on-board processor must evaluate the best 
one according to a performance criterion. 

While the manipulators of Figs. 1.3 and 1.4 are still at the development 
stage, examples of robotic mechanical systems in operation are the well
known six-axis industrial manipulators, six-degree-of-freedom flight simu
lators, walking machines, mechanical hands, and rolling robots. We outline 
the various features of these systems below. 

1.3 Serial Manipulators 

Among all robotic mechanical systems mentioned above, robotic manipu
lators deserve special attention, for various reasons. One is their relevance 
in industry. Another is that they constitute the simplest of all robotic me
chanical systems, and hence, appear as constituents of other, more complex 
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FIGURE 1.4. The Special-Purpose Dextrous Manipulator (SPDM) System 
(courtesy of the Canadian Space Agency.) 

robotic mechanical systems, as will become apparent in later chapters. A 
manipulator, in general, is a mechanical system aimed at manipulating ob
jects. Manipulating, in turn, means to move something with one's hands, 
as it derives from the Latin manus, meaning hand. The basic idea behind 
the foregoing concept is that hands are among the organs that the human 
brain can control mechanically with the highest accuracy, as the work of 
an artist like Picasso, of an accomplished guitar player, or of a surgeon can 
attest. 

Hence, a manipulator is any device that helps man perform a manip
ulating task. Although manipulators have existed ever since man created 
the first tool, only very recently, namely, by the end of World War II, have 
manipulators developed to the extent that they are now capable of actually 
mimicking motions of the human arm. In fact, during WWII, the need for 
manipulating probe tubes containing radioactive substances arose. This led 
to the first six-degree-of-freedom (DOF) manipulators. 
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Shortly thereafter, the need for manufacturing workpieces with high ac
curacy arose in the aircraft industry, which led to the first numerically
controlled (NC) machine tools. The synthesis of the six-DOF manipulator 
and the NC machine tool produced what became the robotic manipula
tor. Thus, the essential difference between the early manipulator and the 
evolved robotic manipulator is the term robotic, which has only recently, as 
of the late sixties, come into the picture. A robotic manipulator is to be dis
tinguished from the early manipulator by its capability of lending itself to 
computer control. Whereas the early manipulator needed the presence of a 
manned master manipulator, the robotic manipulator can be programmed 
once and for all to repeat the same task for ever and ever. Programmable 
manipulators have existed for ab out thirty years, namely, since the advent 
of microprocessors, which allowed a human master to teach the manipula
tor by actually driving the manipulator itself, or a replica thereof, through 
a desired task, while recording all motions undergone by the master. Thus, 
the manipulator would later on repeat the identical task by mere playback. 
However, the capabilities of industrial robots are fully exploited only if the 
manipulator is programmed with software, rather than actually driving it 
through its task trajectory, which many a time, e.g., in car-body spot
welding, requires separating the robot from the production line for more 
than a week. One of the objectives of this book is to develop tools for the 
programming of robotic manipulators. 

However, the capabilities offered by robotic mechanical systems go well 
beyond the mere playback of preprogrammed tasks. Current research aims 
at providing robotic systems with software and hardware that will allow 
them to make decisions on the spot and leam while performing a task. The 
implementation of such systems calls for task-planning techniques that fall 
beyond the scope of this book and, hence, will not be treated here. For a 
glimpse of such techniques, the reader is referred to the work of Latombe 
(1991) and the references therein. 

1.4 Parallel Manipulators 

Robotic manipulators first appeared as mechanical systems constituted by 
a structure consisting of very robust links coupled by either rotational or 
translating joints, the former being called revolutes, the latter prismatic 
joints. Moreover, these structures are a concatenation of links, thereby 
forming an open kinematic chain, with each link coupled to a predeces
sor and a successor, except for the two end links, which are coupled only 
to either a predecessor or to a successor, but not to both. Because of the 
serial nature of the coupling of links in this type of manipulator, even 
though they are supplied with structurally robust links, their load-carrying 



www.manaraa.com

1.4 Parallel Manipulators 9 

FIGURE 1.5. A six-degree-of-freedom flight simulator (courtesy of CAE Elec
tronics Ltd.) 

capacity and their stiffness is too low when compared with the same prop
erties in other multiaxis machines, such as NC machine tools. Obviously, a 
low stiffness implies a low positioning accuracy. In order to remedy these 
drawbacks, parallel manipulators have been proposed to withstand higher 
payloads with lighter links. In a parallel manipulator, we distinguish one 
base platform, one moving platform, and various legs. Each leg is, in turn, 
a kinematic chain of the serial type, whose end links are the two platforms. 
Contrary to serial manipulators, all of whose joints are actuated, parallel 
manipulators contain unactuated joints, which brings ab out a substantial 
difference between the two types. The presence of unactuated joints makes 
the analysis of parallel manipulators, in general, more complex than that 
of their serial counterparts. 
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A paradigm of parallel manipulators is the flight simulator, consisting of 
six legs actuated by hydraulic pistons, as displayed in Fig. 1.5. Recently, an 
explosion of novel designs of parallel manipulators has occurred aimed at 
fast assembly operations, namely, the Delta robot (Clavel, 1988), developed 
at the Lausanne Federal Polytechnic Institute, shown in Fig. 1.6; the Hexa 
robot (Pierrot, Fournier, and Dauchez, 1991), developed at the University 
of Montpellier; and the Star robot (Herve and Sparacino, 1992), developed 
at the Ecole Centrale of Paris. One more example of parallel manipulator is 
the Trussarm, developed at the University ofToronto Institute of Aerospace 
Studies (UTIAS), shown in Fig. 1.7a (Hughes, Sincarsin and Carroll, 1991). 
Merlet (1990), of the Institut National de Recherche en Informatique et 
en Automatique, of Sophia-Antipolis, France, developed a six-axis parallel 
robot, called in French a main gauche, or left hand, shown in Fig. 1.7b, to 
be used as an aid to another robot, possibly of the serial type, to enhance 
its dexterity. Hayward, of McGill University, designed and constructed a 
parallel manipulator to be used as a shoulder module for orient at ion tasks 
(Hayward, 1994); the module is meant for three-degree-of-freedom motions 
but is provided with four hydraulic actuators, which gives it redundant 
actuation-Fig. 1.7c. 

FIGURE 1.6. The Clavel Delta robot. 
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FIGURE 1.7. A sample of parallel manipulators: (a) The UTIAS Trussarm (cour
tesy ofProf. P. C. Hughes); (b) the Merlet left hand (courtesy ofDr. J.-P. Merlet); 
and (c) the Hayward shoulder module (courtesy of Prof. V. Hayward.) 

1.5 Robotic Hands 

As stated above, the hand can be regarded as the most complex mechanical 
subsystem of the human manipulation system. Other mechanical subsys
tems constituting this system are the arm and the fore arm. Moreover, the 
shoulder, coupling the arm with the torso, can be regarded as a spherical 
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joint, Le., the concatenation of three revolute joints with intersecting axes. 
Furthermore, the arm and the forearm are coupled via the elbow, with the 
forearm and the hand finally being coupled by the wrist. Frequently, the 
wrist is modeled as a spherical joint as well, while the elbow is modeled as 
a simple revolute joint. Robotic mechanical systems mimicking the motions 
of the arm and the forearm constitute the manipulators discussed in the 
previous section. Here we outline more sophisticated manipulation systems 
that aim at producing the motions of the human hand, Le., robotic me
chanical hands. These robotic systems are meant to perform manipulation 
tasks, a distinction being made between simple manipulation and dextrous 
manipulation. What the former means is the simplest form, in which the 
fingers playa minor role, namely, by serving as simple static structures that 
keep an object rigidly attached with respect to the palm of the hand-when 
the palm is regarded as a rigid body. As opposed to simple manipulation, 
dextrous manipulation involves a controlled motion of the grasped object 
with respect to the palm. Simple manipulation can be achieved with the 
aid of a manipulator and a gripper, and need not be further discussed here. 
The discussion here is, then, about dextrous manipulation. 

In dextrous manipulation, the grasped object is required to move with re
spect to the palm of the grasping hand. This kind of manipulation appears 
in performing tasks that require high levels of accuracy, like handwriting 
or cutting tissue with a scalpel. Usually, grasping hands are multifingered, 
although some grasping devices exist that are constituted by a simple, 
open, highly redundant kinematic chain (Pettinato and Stephanou, 1989). 
The kinematics of grasping is discussed in Chapter 4. The basic kinematic 
structure of a multifingered hand consists of a palm, which plays the role of 
the base of a simple manipulator, and a set of fingers. Thus, kinematically 
speaking, a multifingered hand has a tree topology, Le., it entails a common 
rigid body, the palm, and a set of jointed bodies emanating from the palm. 
Upon grasping an object with all the fingers, the chain becomes closed with 
multiple loops. Moreover, the architecture of the fingers is that of a sim
ple manipulator. It consists of a number-two to four-of revolute-coupled 
links playing the role of phalanges. However, unlike manipulators of the se
rial type, whose joints are all independently actuated, those of a mechanical 
finger are not and, in many instances, are driven by one single master actu
ator, the remaining joints acting as slaves. Many versions of multifingered 
hands exist: Stanford/ JPL; Utah/MIT; TU Munich; Karlsruhe; Bologna; 
Leuven; Milan; Belgrade; and U. of Toronto, among others. Of these, the 
Utah/MIT Hand (Jacobsen et al. , 1984; 1986) is commercially available. 
It consists of four fingers, one of which is opposed to the· other three and 
hence, plays the role of the human thumb. Each finger consists, in turn, of 
four phalanges coupled by revolute joints; each of these is driven by two 
tendons that can deli ver force only when in tension, each being actuated 
independently. The TU Munich Hand, shown in Fig. 1.8, is designed with 
four identical fingers laid out symmetrically on a hand palm. This hand is 
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FIGURE 1.8. The four-fingered hydraulically actuated TU Munich Rand (cour
tesy of Prof. F. Pfeiffer.) 

hydraulically actuated, and provided with a very high payload-to-weight 
ratio. Indeed, each finger weighs only 1.470 N, but can exert a force of up 
to 30 N. 

We outline below some problems and research trends in the area of dex
trous hands. A key issue here is the programming of the motions of the 
fingers, which is a much more complicated task than the programming 
of a six-axis manipulator. In this regard, Liu, Iberall, and Bekey (1989) 
introduced a task-analysis approach meant to program robotic hand mo
tions at a higher level. They use a heuristic, knowledge-based approach. 
From an analysis of the various modes of grasping, they conclude that the 
requirements for grasping tasks are (i) stability, (ii) manipulability, (iii) 
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torquability, and (iv) radial rot at ability. Stability is defined as a measure 
of the tendency of an object to return to its original position after dis
turbances. Manipulability, as understood in this context, is the ability to 
impart motion to the object while keeping the fingers in contact with the 
object. Torquability, or tangential rotatability, is the ability to rotate the 
long axis of an object-here the authors must assume that the manipu
lated objects are convex and can be approximated by three-axis ellipsoids, 
thereby distinguishing between a longest and a shortest axis-with a mini
mum force, for a prescribed amount of torque. Finally, radial rotatability is 
the ability to rotate the grasped object ab out its long axis with minimum 
torque about the axis. 

Furthermore, Allen, Michelman, and Roberts (1989) introduced an inte
grated system of both hardware and software for dextrous manipulation. 
The system consists of a Sun-3 workstation controlling a Puma 500 arm 
with VAL-lI. The Utah/MIT hand is mounted on the end-effector of the 
arm. The system integrates force and position sensors with control com
mands for both the arm and the hand. To demonstrate the effectiveness of 
their system, the authors implemented a task consisting of removing a light 
bulb from its socket. Finally, Rus (1992) reports a paradigm allowing the 
high-level, task-oriented manipulation control of planar hands. Whereas 
technological aspects of dextrous manipulation are highly advanced, theo
retical aspects are still under research in this area. An extensive literat ure 
survey, with 405 references on the subject of manipulation, is given by 
Reynaerts (1995). 

1.6 Walking Machines 

We focus here on multilegged walking devices, i.e., machines with more 
than two legs. In walking machines, stability is the main issue. One distin
guishes between two types of stability, static and dynamic. Static stability 
refers to the ability of sustaining a configuration from reaction forces only, 
unlike dynamic stability, which refers to that ability from both reaction and 
inertia forces. Intuitively, it is apparent that static stability requires more 
contact points and, hence, more legs, than dynamic stability. Hopping de
vices (Raibert, 1986) and bipeds (Vukobratovic and Stepanenko, 1972) are 
examples of walking machines whose motions are dependent upon dynamic 
stability. For static balance, a walking machine requires a kinematic struc
ture capable of providing the ground reaction forces needed to balance the 
weight of the machine. A biped is not capable of static equilibrium because 
during the swing phase of one leg, the body is supported by a single con
tact point, which is incapable of producing the necessary balancing forces 
to keep it in equilibrium. For motion on a horizontal surface, a minimum 
of three legs is required to produce static stability. Indeed, with three legs, 
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one of these can undergo swing while the remaining two legs are in contact 
with the ground, and hence, two eontact points are present to provide the 
necessary balancing forces from the ground reactions. By the same token, 
the minimum number of legs required to sustain static stability in general 
is four, although a very common arehitecture of walking maehines is the 
hexapod, examples ofwhich are the Ohio State University (OSU) Hexapod 
(Klein, Olson, and Pugh, 1983) and the OSU Adaptive Suspension Vehicle 
(ASV) (Song and Waldron, 1989), shown in Fig. 1.10. A six-Iegged walking 
machine with a design that mimics the locomotion system of the Carau
sius morasus (Graham, 1972), also known as the walking stick, has been 
developed at the Teehnical University of Munieh (Pfeiffer, Eltze, and Wei
demann, 1995). A prototype of this machine, known as the TUM Hexapod, 
is included in Fig. 1.9. The legs of the TUM Hexapod are operated under 
neural-network control, which gives them a reftex-like response when en
eountering obstacles. Upon sensing an obstacle, the leg bounces back and 
tries again to move forward, but raising the foot to a higher level. 

Other machines that are worth mentioning are the Sutherland, Sprout 
and Associates Hexapod (Sutherland and Ullner, 1984), the Titan series of 
quadrupeds (Hirose, Masui, and Kikuchi, 1985) and the Odetics series of 
axially symmetrie hexapods (RusselI, 1983). 

A survey of walking machines, of a rather historical interest by now, 
is given in (Todd, 1985), while a more recent comprehensive account of 
walking maehines is available in a special issue of The International Journal 
01 Robotics Research (Volume 9, No. 2). 

Walking machines appear as the sole means of providing locomotion in 
highly unstructured environments. In fact, the unique adaptive suspension 
provided by these machines allows them to navigate on uneven terrain. 

FIGURE 1.9. A prototype ofthe TU Munieh Hexapod (Courtesy of Prof. F. Pfeif
fer. Reprodueed with permission of TSI Enterprises, Ine.) 
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FIGURE 1.10. The OSU ASV. An example of a six-legged walking machine 
(courtesy of Prof. K. Waldron. Reproduced with permission of The MIT Press.) 

However, walking machines cannot navigate on every type of uneven ter
rain, for they are of limited dimensions. Hence, if terrain irregularities such 
as a crevasse wider than the maximum horizontal leg reach or a cliff of 
depth greater than the maximum vertical leg reach are present, then the 
machine is prevented from making any progress. This limitation, however, 
can be overcome by providing the machine with the capability of attaching 
its feet to the terrain in the same way as a mountain climber goes up a cliff. 
Moreover, machine functionality is limited not only by the topography of 
the terrain, but also by its constitution. Whereas hard rock poses no serious 
problem to a walking machine, muddy terrain can hamper its operation to 
the point that it may jam the machine. Still, under such adverse conditions, 
walking machines offer a better maneuverability than other vehicles. Some 
walking machines have been developed and are operational, but their op
eration is often limited to slow motions. It can be said, however, that like 
research on multifingered hands, the pace of theoretical research on walking 
machines has been much slower t-han that of their technological develop
ments. The above-mentioned OSU ASV and the TU Munich Hexapod are 
among the most technologically developed walking machines. 

1.7 Rolling Robots 

While parallel manipulators indeed solve many inherent problems of serial 
manipulators, their workspaces are more limited than those of the latter. As 
a matter of fact, even serial manipulators have limited workspaces due to 
the finite lengths of their links. Manipulators with limited workspaces can 
be enhanced by mounting them on rolling robots. These are systems evolved 
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from earlier systems called automatie guided vehicles, or AGVs for short. 
AGVs in their most primitive versions are four-wheeled electrically powered 
vehicles that perform moving tasks with a certain degree of autonomy. 
However, these vehicles are usually limited to motions along predefined 
tracks that are either railways or magnetic strips glued to the ground. 

The most common rolling robots use conventional wheels, i.e., wheels 
consisting basically of a pneumatic tire mounted on a hub that rotates 
about an axle fixed to the platform of the robot. Thus, the operation of 
these machines does not differ much from that of conventional terrestrial 
vehicles. An essential difference between rolling robots and other robotic 
mechanical systems is the kinematic constraints between wheel and ground 
in the former. These constraints are of a type known as nonholonomie, as 
discussed in detail in Chapter 6. Nonholonomic constraints are kinematic 
relations between point velocities and angular velocities that cannot be 
integrated in the form of algebraic relations between translational and ro
tational displacement variables. The outcome of this lack of integrability 
leads to a lack of a one-to-one relationship between Cartesian variables and 
joint variables. In fact, while angular displacements read by joint encoders 
of serial manipulators determine uniquely the position and orient at ion of 
their end-effector, the angular displacement of the wheels of rolling ma
chines do not determine the position and orientation of the vehicle body. 
As a matter of fact, the control of rolling robots bears common features 
with that of the redundancy resolution of manipulators of the serial type at 
the joint-rate level. In these manipulators, the number of actuated joints 
is greater than the dimension of the task space. As a consequence, the 
task velocity does not determine the joint rates. Not surprisingly, the two 
types of problems are being currently solved using the same tools, namely, 
differential geometry and Lie algebra (De Luca and Oriolo, 1995). 

As a means to supply rolling robots with 3-dof capabilities, omnidirec
tional wheels (ODW) have been proposed. An example of ODWs are those 
that bear the name of Mekanum wheels, consisting of a hub with rollers 
on its periphery that roll freely about their axes, the latter being oriented 
at a constant angle with respect to the hub axle. In Fig. 1.11, a Mekanum 
wheel is shown, along with a rolling robot supplied with this type of wheels. 
Rolling robots with ODWs are, thus, 3-dof vehicles, and hence, can trans
late freely in two horizontal directions and rotate independently about a 
vertical axis. However, like their 2-dof counterparts, 3-dof rolling robots 
are also nonholonomic devices, and thus, pose the same problems for their 
control as the former. 

Recent developments in the technology of rolling robots have been re
ported that incorporate alternative types of ODWs. For example, Killough 
and Pin (1992) developed a rolling robot with what they call orthogonal 
ball wheels, consisting basically of spherical wheels that can rotate about 
two mutually orthogonal axes. West and Asada (1995), in turn, designed a 
rolling robot with ball wheels, Le., balls that act as omnidirectional wheels; 
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FIGURE 1.11. (a) A Mekanum wheelj (b) A rolling robot supplied with Mekanum 
wheels. 

each ball being mounted on a set of rollers, one of which is actuated; hence, 
three such wheels are necessary to fully control the vehicle. The unactu
ated rollers serve two purposes, i.e., to provide stability to the wheels and 
the vehicle and to measure the rotation of the ball, thereby detecting slip. 
Furthermore, Borenstein (1993) proposed a mobile robot with four degrees 
of freedomj these were achieved with two chassis coupled by an extensible 
link, each chassis being driven by two actuated conventional wheels. 
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2 
Mathematical Background 

2.1 Preamble 

First and foremost, the study of motions undergone by robotic mechani
cal systems or, for that matter, by mechanieal systems at large, requires 
a suitable motion representation. Now, the motion of mechanical systems 
involves the motion of the partieular links comprising those systems, whieh 
in this book are supposed to be rigid. The assumption of rigidity, although 
li mi ted in scope, still covers a wide spectrum of applications, while pro
viding insight into the motion of more complicated systems, such as those 
involving deformable bodies. 

The most general kind of rigid-body motion consists of both transla
tion and rotation. While the study of the former is covered in elementary 
mechanics courses and is reduced to the mechanics of particles, the latter 
is more challenging. Indeed, point translation can be studied simply with 
the aid of 3-dimensional vector calculus, while rigid-body rotations require 
the introduction of tensors, i.e., entities mapping vector spaces into vector 
spaces. 

Emphasis is placed on invariant concepts, i.e., items that do not change 
upon a change of coordinate frame. Examples of invariant concepts are ge
ometrie quantities such as distances and angles between lines. Although we 
may res ort to a coordinate frame and vector algebra to compute distances 
and angles and represent vectors in that frame, the final result will be inde
pendent of how we choose that frame. The same applies to quantities whose 
evaluation calls for the introduction of tensors. Here, we must distinguish 
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between the physical quantity represented by a vector or a tensor and the 
representation of that quantity in a co ordinate frame using aI-dimensional 
array of components in the case of vectors, or a 2-dimensional array in the 
case of tensors. It is unfortunate that the same word is used in English to 
denote a vector and its array representation in a given coordinate frame. 
Regarding tensors, the associated arrays are called matrices. By abuse of 
terminology, we will refer to both tensors and their arrays as matrices, 
although keeping in mind the essential conceptual differences involved. 

2.2 Linear Transformations 

The physical 3-dimensional space is a particular case of a vector space. A 
vector space is a set of objects, called vectors, that follow certain algebraic 
rules. Throughout the book, vectors will be denoted by boldface lowercase 
characters, whereas tensors and their matrix representations are denoted 
by boldface uppercase characters. Let v, VI, V2, V3, and w be elements of 
a given vector space V, which is defined over the real field, and let a and ß 
be two elements of this field, i.e., a and ß are two real numbers. Below we 
summarize the aforementioned rules: 

(i) The sum of VI and V2, denoted by VI + V2, is itself an element of V 
and is commutative, i.e., VI + V2 = V2 + VI; 

(ii) V contains an element 0, called the zero vector of V, which, when 
added to any other element V of V, leaves it unchanged, Le., v+O = V; 

(iii) The sum defined in (i) is associative, i.e., VI +(V2+V3) = (VI +V2)+ 
V3; 

(iv) For every element V of V, there exists a corresponding element, w, 
also of V, which, when added to v, pro duces the zero vector, i.e., 
V + w = O. Moreover, w is represented as -V; 

(v) The product av, or va, is also an element of V, for every V of V and 
every real a. This product is associative, i.e., a(ßv) = (aß)v; 

(vi) If a is the real unity, then av is identically V; 

(vii) The product defined in (v) is distributive in the sense that (a) (a + 
ß)v = av + ßv and (b) a(vI + V2) = aVI + aV2. 

Although vector spaces can be defined over other fields, we will deal with 
vector spaces over the real field unless explicit reference to another field is 
made. Moreover, vector spaces can be either finite- or infinite-dimensional, 
but we will not need the latter. In geometry and elementary mechanics, the 
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dimension of the vector spaces needed is usually three, but when studying 
multibody systems, an arbitrary finite dimension will be required. The 
concept of dimension of a vector space is discussed in more detaillater. 

A linear transformation, represented as an operator L, of a vector space 
U into a vector space V, is a rule that assigns to every vector u of U at 
least one vector v of V, represented as v = Lu, with L endowed with two 
properties: 

(i) homogeneity: L(n:u) = n:v; and 

(ii) additivity: L(UI + U2) = VI + V2· 

In the foregoing discussion, U and V need not be identical, of course. A 
linear transformation of a vector space V into itself is called an homeomor
phism. It assigns to every vector v of V another vector W of V. Note that, 
in the foregoing definitions, no mention has been made of components, and 
hence, vectors and their transformations should not be confused with their 
array representations. 

Particular types of linear transformations of the 3-dimensional Euclidean 
space that will be encountered frequently in this context are projections, 
refiections, and rotations. One furt her type of transformation, which is not 
linear, but nevertheless appears frequently in kinematics, is the one known 
as affine transformation. The foregoing transformations are defined below. 
It is necessary, however, to introduce additional concepts pertaining to 
general linear transformations before expanding into these definitions. 

The range of a linear transformation L of U into V is the set of vectors 
v into which some vector u of U is mapped, i.e., the range of L is defined 
as the set of v = Lu, for every vector u of U. The kernel of L is the set 
of vectors UN of U that are mapped by L into the zero vector 0 E V. 
It can be readily proven (see Exercises 2.1-2.3) that the kernel and the 
range of a linear transformation are both vector subspaces of U and V, 
respectively, i.e., they are themselves vector spaces, but of a dimension 
smaller than or equal to that of their associated vector spaces. Moreover, 
the kernel of a linear transformation is often called the nullspace of the said 
transformation. 

Henceforth, the 3-dimensional Euclidean space is denoted by &3. Having 
chosen an origin 0 for this space, its geometry can be studied in the context 
of general vector spaces. Hence, points of &3 will be identified with vectors 
of the associated 3-dimensional vector space. Moreover, lines and planes 
passing through the origin are subspaces of dimensions 1 and 2, respectively, 
of &3. Clearly, lines and planes not passing through the origin of &3 are not 
subspaces but can be handled with the algebra of vector spaces, as will be 
shown here. 

An orthogonal projection P of &3 onto itself is a linear transformation of 
the said space onto a plane II passing through the origin and having a unit 
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normal n, with the properties: 

p2 = P, Pn = 0 (2.1a) 

Any matrix with the first property above is termed idempotent. For n x n 
matrices, it is sometimes necessary to indicate the lowest integer l for which 
an analogous relation follows, i.e., for which pi = P. In this case, the matrix 
is said to be idempotent of degree l. 

Clearly, the projection of a position vector p, denoted by p', onto a plane 
[J of unit normal n, is p itself minus the component of p along n, i.e., 

p/=p-n(nTp) (2.1b) 

where the superscript T denotes either vector or matrix transposition and 
n T p is equivalent to the usual dot product n . p. 

Now, the identity matrix 1 is defined as the isomorphism of a vector 
space into itself leaving every vector v of V unchanged, i.e., 

1v=v 

Thus, p', as given by eq.(2.1b), can be rewritten as 

p' = 1p - nnT p == (1 - nnT)p 

and hence, the orthogonal projection P onto [J can be represented as 

P = 1- nnT 

where the produet nnT amounts to a 3 x 3 matrix. 

(2.2) 

(2.3) 

(2.4) 

Now we turn to reflections. Here we have to take into account that re
fleetions occur frequently aceompanied by rotations, as yet to be studied. 
Since reflections are simpler to represent, we first discuss these, rotations 
being discussed in full detail in Seetion 2.3. What we shall discuss in this 
section is pure refiections, i.e., those occurring without any eoncomitant 
rotation. Thus, all reflections studied in this seetion are pure reflections, 
but for the sake of brevity, they will be referred to simply as refiections. 

A refiection R of [3 onto a plane [J passing through the origin and 
having a unit normal n is a linear transformation of the said space into 
itself such that a position veetor p is mapped by R into a vector p' given 
by 

p' = p - 2nnT p == (1 - 2nnT )p 

Thus, the reflection R ean be expressed as 

R= 1- 2nnT (2.5) 

From eq.(2.5) it is then apparent that a pure reflection is represented by a 
linear transformation that is symmetrie and whose square equals the iden
tity matrix, Le., R 2 = 1. Indeed, symmetry is apparent from the equation 
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above; the second property is readily proven below: 

R 2 = (1 - 2nnT )(1 - 2nnT ) 

= 1 - 2nnT - 2nnT + 4(nnT )(nnT ) = 1 - 4nnT + 4n(nT n)nT 

which apparently reduces to 1 because n is a unit vector. Note that from 
the second property above, we find that pure reflections observe a further 
interesting property, namely, 

i.e., every pure reflection equals its inverse. This result can be understood 
intuitively by noticing that, upon doubly reflecting an image using two 
mirrors, the original image is recovered. 

Further, we take to deriving the orthogonal decomposition of a given 
vector v into two components, one along and one normal to a unit vector 
e. The component of v along e, termed here the axial component, vll-read 
v-par-is simply given as 

_ T 
vII = ee v (2.6a) 

while the corresponding normal component, V.1. -read v-perp--is simply 
the difference v - vII' i.e., 

(2.6b) 

the matrix in parentheses in the foregoing equation being rather frequent 
in kinematics. This matrix will appear when studying rotations. Rotations 
are more complicated transformations that deserve special attention, the 
entire Section 2.3 being devoted to these transformations. 

Further concepts are now recalled: The basis of a vector space V is a set 
of linearly independent vectors of V, {Vi n, in terms of which any vector v 
of V can be expressed as 

(2.7) 

where the elements of the set {adl' are all elements of the field over which 
V is defined, i.e., they are real numbers in the case at hand. The number 
n of elements in the set S = {Vi} I' is called the dimension of V. Note that 
any set of n linearly independent vectors of V can play the role of a basis of 
this space, but once this basis is defined, the set of real coefficients {ai n 
for expressing a given vector v is unique. 

Let U and V be two vector spaces of dimensions m and n, respectively, 
and L a linear transformation of U into V, and define bases Su and Sv for 
U and V as 

(2.8) 

Since each LUj is an element of V, it can be represented uniquely in terms 
of the vectors of Sv, namely, as 
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Consequently, in order to represent the images of the m vectors of Bu, 
namely, the set {Luj Hn, n x m real numbers lij, for i = 1, ... , n and 
j = 1, ... , m, are necessary. These real numbers are now arranged in the 
n x m array [L ]~~ defined below: 

(2.10) 

The foregoing array is thus called the matrix representation 0/ L with 
respect to Bu and Bv. We thus have an important definition, namely, 

Definition 2.2.1 The jth column 0/ the matrix representation 0/ L with 
respect to the bases Bu and Bv is composed 0/ the n real coefficients lij 0/ 
the representation 0/ the image 0/ the jth vector 0/ Bu in terms 0/ Bv. 

The notation introduced in eq.(2.1O) is rat her cumbersome, far it involves 
one subscript and one superscript. Moreover, each of these is subscripted. 
In practice, the bases involved are self-evident, which makes an explicit 
mention of these unnecessary. In particular, when the mapping L is an 
isomorphism, i.e., a one-to-one mapping of U onto itself, then a single basis 
suffices to represent L in matrix form. In this case, its bracket will bear 
only a subscript, and no superscript, namely, [L]B. Moreover, we will use, 
henceforth, the concept of basis and co ordinate frame interchangeably, since 
one implies the other. 

Two different bases are unavoidable when the two spaces under study 
are physically distinct, which is the case in velocity analyses of manipu
lators. As we will see in Chapter 4, in these analyses we distinguish be
tween the velocity of the manipulator in Cartesian space and that in the 
joint-rate space. While the Cartesian-space velocity-or Cartesian veloc
ity, for brevity-consists, in general, of a 6-dimensional vectar containing 
the 3-dimensional angular velo city of the end-effector and the translational 
velocity of one of its points, the latter is an n-dimensional vector. More
over, if the manipulator is coupled by revolute joints only, the units of the 
joint-rate vector are all S-I, whereas the Cartesian velocity contains some 
components with units of S-1 and others with units of ms- 1 . 

Further definitions are now recalled. Given an homeorphism L of an n
dimensional vector space V, a nonzero vector e that is mapped by L into a 
multiple of itself, Ae, is called an eigenvector of L, the scalar A being called 
an eigenvalue of L. The eigenvalues of L are determined by the equation 

det(Al - L) = 0 (2.11) 

Note that the matrix Al - L is linear in A, and since the determinant of 
an n x n matrix is a homogeneous nth-order function of its entries, the 
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left-hand side of eq.(2.11) is an nth-degree polynomial in ..\. The foregoing 
polynomial is termed the characteristic polynomial ofL. Hence, every n x n 
matrix L has n complex eigenvalues, even if L is defined over the real field. 
If it is, then its complex eigenvalues appear in conjugate pairs. Clearly, 
the eigenvalues of L are the roots of its characteristic polynomial, while 
eq.(2.11) is called the characteristic equation of L. 

Example 2.2.1 What is the representation of the refiection R of [3 into 
itself, with respect to the x-y plane, in terms of unit vectors parallel to the 
X, Y, Z axes that form a coordinate frame F? 

Solution: Note that in this case, U = V = [3 and, hence, it is not necessary 
to use two different bases for U and V. Now, let i, j, k, be unit vectors 
parallel to the X, Y, and Z axes of a frame F. Clearly, 

Ri = i 
Rj =j 

Rk=-k 

Thus, the representations of the images of i, j and k under R, in F, are 

where subscripted brackets are used to indicate the representation frame. 
Hence, the matrix representation of R in F, denoted by [RlF , is 

[RIF~ [~ ! ~J 
2.3 Rigid-Body Rotations 

A linear isomorphism, i.e., a one-to-one linear transformation mapping a 
space V onto itself, is called an isometry if it preserves distances between 
any two points of V. If u and v are regarded as the position vectors of two 
such points, then the distance d between these two points is defined as 

(2.12) 

The volume V of the tetrahedron defined by the origin and three points 
of the 3-dimensional Euclidean space of position vectors u, v, and w is 
obtained as one sixth of the absolute value of the double mixed product of 
these three vectors, 

1 1 
V == 61u x V· wl = 61det [u v w II (2.13) 
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i.e., if a 3x3 array [A] is defined in terms of the components of u, v, and 
W, in a given basis, then the first column of [A] is given by the three 
components of u, the second and third columns being defined analogously. 

N ow, let Q be an isometry mapping the triad {u, v, w} into {u/, v', w /}. 
Moreover, the distance from the origin to the points of position vectors u, 
v, and w is given simply as Ilull, /lv/l, and /lw/l, which are defined as 

/lull == JuTu, IIvil == JvTv, IIwil ==JwTw (2.14) 

Clearly, 
IIu/ll = /luII, /lv//l = IIvll, /lw//l = /lw/l (2.15a) 

and 
det [u' v' w / ] = ±det [u v w] (2.15b) 

If, in the foregoing relations, the sign of the determinant is preserved, the 
isometry represents a rotation; otherwise, it represents a reflection. Now, 
let p be the position vector of any point of [3, its image under a rotation 
Q being p'. Hence, distance preservation requires that 

(2.16) 

where 
p' = Qp (2.17) 

condition (2.16) thus leading to 

(2.18) 

where 1 was defined in Section 2.2 as the identity 3 x 3 matrix, and hence, 
eq.(2.18) states that Q is an orthogonal matrix. Moreover, let T and T' 
denote the two matrices defined below: 

T [ ] T I = [u' v' w ' ] = u v w , (2.19) 

from which it is clear that 
T' =QT (2.20) 

Now, for a rigid-body rotation, eq.(2.15b) should hold with the positive 
sign, and hence, 

det(T) = det(T/) 

and, by virtue of eq.(2.20), we conclude that 

det(Q) = +1 

(2.21a) 

(2.21b) 

Therefore, Q is a proper orthogonal matrix, i.e., it is a proper isometry. 
Now we have 
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Theorem 2.3.1 The eigenvalues of a proper orthogonal matrix Q lie on 
the unit circle centered at the origin of the complex plane. 

Proof: Let >. be one of the eigenvalues of Q and e the eorresponding 
eigenvector, so that 

Qe = >.e (2.22) 

In general, Q is not expected to be symmetrie, and henee, >. is not neees
sarily real. Thus, >. is eonsidered complex, in general. In this light, when 
transposing both sides of the foregoing equation, we will need to take the 
complex eonjugates as weIl. Henceforth, the complex conjugate of a veetor 
or a matrix will be indicated with an asterisk as a superseript. As wen, the 
conjugate of a eomplex variable will be indicated with a bar over the said 
variable. Thus, the transpose conjugate of the latter equation takes on the 
form 

e*Q* = Xe* (2.23) 

Multiplying the corresponding sides of the two previous equations yields 

e*Q*Qe = X>.e*e (2.24) 

However, Q has been assumed real, and hence, Q* reduces to QT, the 
foregoing equation thus reducing to 

(2.25) 

But Q is orthogonal by assumption, and hence, it obeys eq.(2.18), which 
means that eq.(2.25) reduces to 

(2.26) 

where I . I denotes the modulus of the complex variable within it. Thus, the 
foregoing equation leads to 

(2.27) 

thereby eompleting the intended proof. As a direct consequence of Theo
rem 2.3.1, we have 

Corollary 2.3.1 A proper orthogonal 3 x 3 matrix has at least one eigen
value that is + 1. 

Now, let e be the eigenvector of Q associated with the eigenvalue +1. 
Thus, 

Qe=e (2.28) 

What eq.(2.28) states is summarized as a theorem below: 

Theorem 2.3.2 (Euler, 1776) A rigid-body motion about a point 0 leaves 
fixed a set of points lying on a line .c that passes through 0 and is parallel 
to the eigenvector e of Q associated with the eigenvalue + 1. 
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A furt her result, that finds many applications in robotics and, in general, 
in system theory, is given below: 

Theorem 2.3.3 (Cayley-Hamilton) Let P()") be the characteristic polyno
mi al 01 an n x n matrix A, i.e., 

P()") = det()"l - A) = )..n + an_l)..n-l + ... + al).. + ao (2.29) 

Then A satisjies its characteristic equation, i. e., 

An + an-lA n-l + ... + alA + aol = 0 (2.30) 

where 0 is the n x n zero matrix. 

Proof: See Halmos (1974). 

What the Cayley-Hamilton Theorem states is that any power p 2: n of 
the n x n matrix A can be expressed as a linear combination of the first 
n powers of A-the Oth power of Ais, of course the n x n identity matrix 
1. An important consequence of this result is that any analytic matrix 
function of A can be expressed not as an infinite series, but as a sum, 
namely, a linear combination of the first n powers of A: I, A, ... , A n-l . An 
analytic function I(x) of a real variable x is, in turn, a function with aseries 
expansion. Moreover, an analytic matrix function of a matrix argument A 
is defined likewise, an example of which is the exponential function. From 
the previous discussion, then, the exponential of A can be written as a 
linear combination of the first n powers of A. It will be shown later that 
any proper orthogonal matrix Q can be represented as the exponential of a 
skew-symmetric matrix derived from the unit vector e of Q, of eigenvalue 
+1, and the associated angle of rotation, as yet to be defined. 

2.3.1 The Cross-Product Matrix 

Prior to introducing the matrix representation of a rotation, we will need a 
few definitions. We will start by defining the partial derivative of a vector 
with respect to another vector. This is a matrix, as described below: In 
general, let u and v be vectors of spaces U and V, of dimensions rn and 
n, respectively. Furthermore, let t be a real variable and 1 be real-valued 
function oft, u = u(t) and v = v(u(t)) being rn- and n-dimensional vector 
functions of t as weIl, with 1 = I(u, v). The derivative of u with respect 
to t, denoted by ü(t), is an rn-dimensional vector whose ith component is 
the derivat.ive of the ith component of u in a given basis, Ui, with respect 
to t. A similar definition foIlows for v(t). The partial derivative of 1 with 
respect to u is an rn-dimensional vector whose ith component is the partial 
derivative of 1 with respect to Ui, with a corresponding definition for the 
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partial derivative of f with respect to v. The foregoing derivatives, as all 
other vectors, will be assumed, henceforth, to be column arrays. Thus, 

[
8f /8Ul ] 8f = 8f/8u2 

8u - : ' 

8f /8um 

(2.31) 

Furthermore, the partial derivative of v with respect to u is an n x m 
array whose (i,j) entry is defined as 8vd8uj, Le., 

[

8Vd8Ul 8vd8u2 
8v == 8V2/8ul 8V2/8U2 

8u : : 
8vn/8ul 8vn/ 8u2 

... 8Vd8um ] 

... 8V2/8um 

8vn/8um 

(2.32) 

Hence, the total derivative of f with respect to u can be written as 

(2.33) 

If, moreover, f is an explicit function of t, i.e., if f = f(u, v, t) and 
v = v(u, t), then, one can write the total derivative of f with respect to t 
as 

(2.34) 

The total derivative of v with respect to t can be written, likewise, as 

dv 8v 8v du 
dt = 8t + 8u dt (2.35) 

Example 2.3.1 Let the components ofv andx in a certain referencefmme 
:F be given as 

(2.36a) 

Then 

(2.36b) 

Hence, 

[ 8(V x X)] 
8x F 

(2.36c) 
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Henceforth, the partial derivative of the cross product of any 3-dimen
sional vectors v and x will be denoted by the 3 x 3 matrix V. For obvious 
reasons, V is termed the cross-product matrix of vector v. Sometimes the 
cross-product matrix of a vector v is represented as v, but we do not follow 
this notation for the sake of consistency, since we decided at the outset 
to represent matrices with boldface uppercase letters. Thus, the foregoing 
cross product admits the alternative representations 

v x x = Vx (2.37) 

Now, the following is apparent: 

Theorem 2.3.4 The cross-product matrix A 01 any 3-dimensional vector 
a is skew-symmetric, i. e., 

and, as a consequence, 

(2.38) 

where A 2 can be readily proven to be 

(2.39) 

with 11 . 11 denoting the Euclidean norm 01 the vector inside it. 

Note that given any 3-dimensional vector a, its cross-product matrix A 
is uniquely defined. Moreover, this matrix is skew-symmetric. The converse 
also holds, i.e., given any 3 x 3 skew-symmetric matrix A, its associated 
vector is uniquely defined as weIl. This result is made apparent from Ex
ample 2.3.1 and will be discussed furt her when we define the axial vector 
of an arbitrary 3 x 3 matrix below. 

2.3.2 The Rotation Matrix 

In deriving the matrix representation of a rotation, we should recall The
orem 2.3.2, which suggests that an explicit representation of Q in terms 
of its eigenvector e is possible. Moreover, this representation must contain 
information on the amount of the rotation under study, which is not hing 
hut the angle 01 rotation. Furthermore, line L, mentioned in Euler's The
orem, is termed the axis 01 rotation of the motion of interest. In order to 
derive the aforementioned representation, consider the rotation depicted in 
Fig. 2.1 of angle cp about line L. 

From Fig. 2.1(a), clearly, one can write 

---7 ----> 
p' = OQ+QP' (2.40) 
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------where OQ is the axial component of p along vector e, which is derived as 
in eq.(2.6a), namely, 

(2.41) 

Furthermore, from Fig. 2.1b, 
--+ ______ -----t 

QP' = (cos<jJ)QP + (sin<jJ)QP" (2.42) 

------with Q P being nothing but the normal component of p with respect to e, 
as introduced in eq.(2.6b), i.e., 

(2.43) 

-----t 

and Q p" given as 
-----t 

QP" = e x p == Ep (2.44) 

Substitution of eqs.(2.44) and (2.43) into eq.(2.42) leads to 

--+ 
QP' = cos <jJ(1 - eeT)p + sin <jJEp (2.45) 

If now eqs.(2.41) and (2.45) are substituted into eq.(2.40), one obtains 

p' = eeT p + cos <jJ(1 - eeT)p + sin <jJEp 

Thus, eq.(2.40) reduces to 

p' = reeT + cos <jJ(1 - eeT) + sin <jJE]p 

pli 

Q 

p' 

(2.46) 

(2.47) 

p' 

-f--------'--__ p 
Q 

o 
(a) (b) 

FIGURE 2.1. Rotation of a rigid body about a line. 
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From eq.(2.47) it is apparent that p' is a linear transformation of p, the 
said transformation being given by the matrix inside the brackets, which 
is the rotation matrix Q sought, Le., 

Q = eeT + cos</J(l - eeT ) + sin</JE (2.48) 

A special case arises when </J = 7f, in whieh case 

Q = -1 + 2eeT , for </J = 7f (2.49) 

whence it is apparent that Q is symmetrie if </J = 7f. Of course, Q becomes 
symmetrie also when </J = 0, but this is a rat her obvious case, leading to 
Q = 1. Except for these two cases, the rotation matrix is not symmetrie. 
However, under no circumstance does the rotation matrix become skew
symmetrie, for a 3 x 3 skew-symmetrie matrix is by necessity singular, which 
contradicts the property of proper orthogonal matrices of eq.(2.21b). 

Now one more representation of Q in terms of e and </J is given. For a 
fixed axis of rotation, i.e., for a fixed value of e, the rotation matrix Q is 
a function of the angle of rotation </J, only. Thus, the series expansion of Q 
in terms of </J is 

Q(</J) = Q(O) + Q'(O)</J + ;, Q"(0)</J2 + ... + ~, Q(k) (O)</Jk +... (2.50) 

where the superscript (k) stands for the kth derivative of Q with respect to 
</J. Now, from the definition of E, one can readily prove the relations below: 

(2.51) 

Furthermore, using eqs.(2.48) and (2.51), one can readily show that 

(2.52) 

with E defined already as the cross-product matrix of e. Moreover, from 
eqs.(2.50) and (2.52), Q(</J) can be expressed as 

whose right-hand side is nothing but the exponential of E</J, i.e., 

(2.53) 

Equation (2.53) is the exponential representation of the rotation matrix 
in terms of its natural invariants, e and </J. The foregoing parameters are 
termed invariants because they are clearly independent of the coordinate 
axes chosen to represent the rotation under study. The adjective natural is 
necessary to distinguish them from other invariants that will be introduced 
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presently. This adjective seems suitable because the said invariants stern 
naturally from Euler's Theorem. 

Now, in view of eqs.(2.51), the above series can be written as 

[ 1 2 1 4 1 k 2k ] T Q(<p)=l+ -2!<P + 4!<P - ... + (2k)!(-I) <p + ... (l-ee) 

[ 1 3 1 k 2k+l ] + <P-3I<P + ... + (2k+l)!(-I) <p + ... E 

The series inside the first brackets is apparently cos<p - 1, while that in 
the second is sin <p. We have, therefore, an alternative representation of Q, 
namely, 

Q = 1 + sin<pE + (1 - cos<p)E2 (2.54) 

which is an expected result in view of the Cayley-Hamilton Theorem. 

The Canonical Forms of the Rotation Matrix 

The rotation matrix takes on an especially simple form if the axis of rotation 
coincides with one of the coordinate axes. For example, if the X axis is 
parallel to the axis of rotation, Le., parallel to vector e, in a frame that we 
will label X, then, we will have 

[e[x~ m, [~ 
0 

~1] [~ 
0 

~J [E]x= 0 [E2 ]x = -1 
1 0 

In the X-frame, then, 

[~ 
0 -,~n~ ] [Q]x= cos<p (2.55a) 

sin <p cos<p 

Likewise, if we define the coordinate frames Y and Z so that their Y and 
Z axes, respectively, coincide with the axis of rotation, then 

[Q]y = [co~<P ~ Si~<P] (2.55b) 
- sin <p 0 cos <p 

and 

[

COS <p 
[Q]z = Si~<P 

- sin<p 0] 
cos<p 0 

o 1 
(2.55c) 

The representations of eqs.(2.55a-c) can be called the X-, Y-, and Z
canonical forms of the rotation matrix. In many instances, a rotation ma
trix cannot be directly derived from information on the original and the 
final orientations of a rigid body, but the overall motion can be readily 
decomposed into a sequence of simple rotations taking the above canonical 
forms-see, e.g., Exercise 18. 
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2.3.3 The Linear Invariants of a 3 x 3 Matrix 

Now we introduce two linear invariants of 3 x 3 matrices. Given any 3 x 3 
matrix A, its Cartesian deeomposition, the counterpart of the Cartesian / 
representation of complex numbers, consists of the sum of its symmetrie 
part, A s , and its skew-symmetric part, Ass, defined as 

1 T 
As==-(A+A ), 

2 
1 T Ass==-(A-A) 
2 

(2.56) 

The axial veetor or for brevity, the veetor of A, is the vector a with the 
property 

a x v == Assv (2.57) 

for any 3-dimensional vector v. The traee of Ais the sum of the eigenvalues 
of As, which are real. Since no co ordinate frame is involved in the above 
definitions, these are invariant. When calculating these invariants, of course, 
a particular co ordinate frame must be used. Let us assurne that the entries 
of matrix A in a certain co ordinate frame are given by the array of real 
numbers aij, for i,j = 1,2,3. Moreover, let a have components ai, for i = 
1,2,3, in the same frame. The above-defined invariants are thus calculated 
as 

tr(A) == all + a22 + a33 (2.58) 

From the foregoing definitions, the following is now apparent: 

Theorem 2.3.5 The veetor of a 3 x 3 matrix vanishes if and only if it is 
symmetrie, whereas the traee of an n x n matrix vanishes if the matrix is 
skew symmetrie. 

Other useful relations are given below. For any 3-dimensional vectors a 
and b, 

(2.59) 

and 
(2.60) 

The second relation is quite straightforward, but the first one is less so; a 
proof of the first relation is given below: Let w denote vect(abT). From 
Definition (2.57), for any 3-dimensional vector v, 

wxv=Wv (2.61 ) 

where W is the skew-symmetric component of abT, namely, 

(2.62) 
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and henee, 

(2.63) 

Now, let us eompare the last expression with the double eross produet 
(b x a) x v, namely, 

(2.64) 

from whieh it beeomes apparent that 

1 
w = "2b x a (2.65) 

and the aforementioned relation readily follows. 
Note that Theorem 2.3.5 states a necessary and sufficient eondition for 

the vanishing of the vector of a 3 x 3 matrix, but only a suffieient eondition 
for the vanishing of the traee of an n x n matrix. What this implies is that 
the traee of an n x n matrix ean vanish without the matrix being neeessar
ily skew symmetrie, but the traee of a skew-symmetric matrix necessarily 
vanishes. Also note that whereas the vector of a matrix is defined only for 
3 x 3 matriees, the traee ean be defined more generally for n x n matriees. 

2.3.4 The Linear Invariants of a Rotation 

From the invariant representations of the rotation matrix, eqs.(2.48) and 
(2.54), it is clear that the first two terms of Q, eeT and eos4>(I- eeT ), are 
symmetrie, whereas the third one, sin 4>E, is skew-symmetric. Henee, 

vect(Q) = vect(sin4> E) = sin4>e (2.66) 

whereas 

tr(Q) = tr[eeT + eos 4>(1 - eeT )] == eT e + eos 4>(3 - eT e) = 1 + 2 cos 4> 
(2.67) 

from which one ean readily solve for eos 4>, namely, 

eos 4> = tr(Q) - 1 
2 

(2.68) 

Henceforth, the veetor of Q will be denoted by q and its eomponents in a 
given eoordinate frame by ql, q2,and q3' Moreover, rat her than using tr(Q) 
as the other linear invariant, qo == eos 4> will be introdueed to refer to the 
linear invariants oJ the rotation matrix. Henee, the rotation matrix is fully 
defined by Jour scalar parameters, namely {qiH, which will be eonveniently 
stored in the 4-dimensional array A, defined as 

(2.69) 
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Note, however, that the four eomponents of .>. are not independent, for 
they obey the relation 

Thus, eq.(2.70) ean be written in a more eompact form as 

11'>'11 2 == qr + q~ + q5 + q5 = 1 

(2.70) 

(2.71) 

What eq.(2.70) states has a straight forward geometrie interpretation: As 
a body rotates about a fixed point, its motion ean be deseribed in a 4-
dimensional spaee by the motion of a point of position vector .>. that moves 
on the surfaee of the unit sphere eentered at the origin of the said spaee. 
Alternatively, one ean eonclude that, as a rigid body rot at es about a fixed 
point, its motion ean be deseribed in a 3-dimensional spaee by the motion 
of position veetor q, whieh moves within the unit solid sphere eentered at 
the origin of the said spaee. Given the dependenee of the four eomponents 
of veetor .>., one might be tempted to solve for, say, qo from eq.(2.70) in 
terms of the remaining eomponents, namely, as 

(2.72) 

This, however, is not a good idea beeause the sign ambiguity of eq.(2.72) 
leaves angle cp undefined, for qo is nothing but eos cp. Moreover, the three 
eomponents of veetor q alone, i.e., sin cp e, do not suffiee to define the 
rotation represented by Q. Indeed, from the definition of q, one has 

sincp=±llqll, e=q/sincp (2.73) 

from whieh it is clear that q alone does not suffiee to define the rotation 
under study, sinee it leaves angle cp undefined. Indeed, the veetor of the 
rotation matrix provides no information about eos cp. Yet another repre
sentation of the rotation matrix is displayed below, in terms of its linear 
invariants, that is readily derived from representations (2.48) and (2.54), 
namely, 

qqT qqT_ 
Q = IIql12 + qo(l - Ilq112) + Q 

in whieh Q is the eross-produet matrix of veetor q, Le., 

for any vector x. 

Q = a(q x x) 
- ax 

(2.74a) 

Note that by virtue of eq.(2.70), the representation of Q given in eq.(2.74a) 
ean be expressed alternatively as 

_ qqT 
Q=qol+Q+-1-

+qo 
(2.74b) 
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From either eq.(2.74a) or eq.(2.74b) it is apparent that linear invariants 
are not suitable to represent a rotation when the associated angle is either 
'Ir or elose to it. Note that a rotation through an angle 4J about an axis 
given by vector e is identical to a rotation through an angle -4J ab out an 
axis given by vector -e. Hence, changing the sign of e does not change the 
rotation matrix, provided that the sign of 4J is also changed. Henceforth, 
we will choose the sign of the components of e so that sin 4J ~ 0, which is 
equivalent to assuming that 0 ~ 4J ~ 'Ir. Thus, sin 4J is calculated as Ilqll, 
while cos 4J as indicated in eq.(2.68). Obviously, e is simply q normalized, 
i.e., q divided by its Euclidean norm. 

2.3.5 Examples 

The examples below are meant to stress the foregoing ideas on rotation 
invariants. 

Example 2.3.2 If [elF = [v'3/3, -v'3/3, v'3/3lT in a given coordinate 
frame Fand 4J = 1200 , what is Q in F? 

Solution: From the data, 

Moreover, in the F frame, 

and hence, 

T 1 [ 2 [1- ee lF = 3" 1 
-1 

Thus, from eq.(2.48), 

i.e., 

1 
[QlF = 3" [ !1 ~1 !1]- ~ [~ ~ ~1] + ~ [~ ~1 =~] 

1 -1 1 6 -1 1 2 6 1 1 0 
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Example 2.3.3 The matrix representation of a linear transformation Q 
in a certain reference frame F is given below. Find out whether the said 
transformation is a rigid-body rotation. If it is, find its natural invariants. 

Solution: First the given array is tested for orthogonality: 

thereby showing that the said array is indeed orthogonal. Thus, the linear 
transformation could represent a reflection or a rotation. In order to de
eide which one this represents, the determinant of the foregoing array is 
computed: 

det( Q) = +1 

which makes apparent that Q indeed represents a rigid-body rotation. Now, 
its natural invariants are computed. The unit vector e can be computed 
as the eigenvector of Q assoeiated with the eigenvalue +1. This requires, 
however, finding a nontrivial solution of a homogeneous linear system of 
three equations in three unknowns. This is not difficult to do, but it is 
cumbersome and is not necessary. In order to find e and </>, it is recalled 
that vect( Q) = sin </> e, which is readily computed with differences only, as 
indicated in eq.(2.58), namely, 

U nder the assumption that sin</> ?: 0, then, 

sin</> == Ilqll = V; 
and hence, 

[qJF v'3 [1] 
[eJF=lfQII=-S i 

and 
</>=600 or 1200 

The foregoing ambiguity is resolved by the trace of Q, which yields 

1 
cos</> =--

2 
1 + 2cos</> == tr(Q) = 0, 
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The negative sign of cos cf> indicates that cf> lies in the second quadrant~it 
cannot lie in the third quadrant because of OUf assumption about the sign 
of sin </>--, and hence, 

Example 2.3.4 A coordinate frame Xl, YI , Zl is rotated into a configu
ration X 2 , Y2 , Z2 in such a way that 

Find the matrix representation of the rotation in X I, YI , Zl coordinates. 
From this representation, compute the direction of the axis and the angle 
of rotation. 

Solution: Let i l , jl, k l be unit vectors parallel to Xl, YI , Zl, respectively, 
i 2 , j2, k 2 being defined correspondingly. One has 

and hence, from Definition 2.2.1, the matrix representation [Q h of the 
rotation under study in the Xl, YI , Zl co ordinate frame is readily derived: 

from which the linear invariants follow, namely, 

1 1 
coscf> = -[tr(Q) -1] =--

2 2 

Under OUf assumption that sin cf> ~ 0, we obtain 

. v'3 
sm cf> = Ilqll = 2' [ e h = [~h = v'3 [! 1] 

sm cf> 3 -1 

From the foregoing values for sin cf> and cos cf> , angle cf> is computed uniquely 
as 

Example 2.3.5 Show that the matrix P given in eq. (2.4) satisfies proper
ties (2.1a). 

Solution: First, we prove idempotency, Le., 

p 2 = (1 _ nnT )(l - nnT) 

= 1 - 2nnT + nnT nnT = 1 - nnT = p 
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thereby showing that Pis, indeed, idempotent. Now we prove that n is an 
eigenvector of P with eigenvalue 0, and henee, n spans the nullspaee of P. 
In fact, 

Pn = (1 - nnT)n = n - nnT n = n - n = 0 

thereby eompleting the proof. 

Example 2.3.6 The representations of three linear transformations in a 
given coordinate frame F are given below: 

1 [ ~2 1 

~l [AIF="3 2 
-1 -2 

1 [1 
1 

~ll [BIF= "3 2 
-1 

1 [l 
2 

~2l [CIF= "3 1 
-2 

One of the foregoing matrices is an orthogonal projection, one is a refiec
tion, and one is a rotation. Identify each of these and give its invariants. 

Solution: From representations (2.48) and (2.54), it is clear that a rotation 
matrix is symmetrie if and only if sin cf> = O. This means that a rotation 
matrix eannot be symmetrie unless its angle of rotation is either 0 or 'Ir, 

i.e., unless its traee is either 3 or -1. Sinee [B IF and [C IF are symmetrie, 
they eannot be rotations, unless their traees take on the foregoing values. 
Their traees are thus evaluated below: 

tr(B) = 2, tr(C) = 1 

whieh thus mIes out the foregoing matrices as suitable eandidates for ro
tations. Thus, A is the only eandidate left for proper orthogonality, its 
suitability being tested below: 

det(A) = +1 

and henee, A indeed represents a rotation. Its natural invariants are next 
eomputed: 

1 1 1 
eoscf> = -[tr(A) -11 = -(2-1) = -

2 2 2 



www.manaraa.com

2.3 Rigid-Body Rotations 41 

We assurne, as usual, that sin<jY ?: O. Then, 

. v'3 
Slll<jY = Ilvect(A)11 = 2' i.e., <jY = 60° 

Moreover, 

[elF = [vect(A)lF = v'3 [~11 
Ilvect(A)II 3 -1 

Now, one matrix of Band C is an orthogonal projection and the other is 
arefleetion. To be arefleetion, a matrix has to be orthogonal. Henee, eaeh 
matrix is tested for orthogonality: 

thereby showing that C is orthogonal and Bis not. Furthermore, det(C) = 
-1, which eonfirms that C is arefleetion. Now, if B is a projeetion, it is 
bound to be singular and idempotent. From the orthogonality test it is clear 
that it is idempotent. Moreover, one ean readily verify that det(B) = 0, 
and henee B is singular. The unit veetor [n lF = [nI, n2, n3 lT spanning 
its nullspace is determined from the general form of projeetions, eq.(2.1a), 
whenee it is apparent that 

nnT = 1- B 

Therefore, if a solution n has been found, then -n is also a solution, i.e., the 
problem admits two solutions, one being the negative of the other. These two 
solutions are found below, by first rewriting the above system of equations 
in eomponent form: 

[ n7~2 n~~2 ~~~:l = ~ [~1 ~1 ~ll 
nln3 n2n3 n 3 -1 1 1 

Now, from the diagonal entries of the above matrices, it is apparent that the 
three eomponents of n have identieal absolute values, i.e., v'3/3. Moreover, 
from the off-diagonal entries of the same matrices, the seeond and third 
eomponents of n bear equal signs, but we eannot tell whether positive or 
negative, beeause of the quadratie nature of the problem at hand. The two 
solutions are thus obtained as 

which is the only invariant of B. 
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We now look at C, which is a reflection, and hence, bears the form 

C = 1- 2nnT 

In order to determine n, note that 

or in component form, 

T 1 
nn = -(1- C) 

2 

nl~2 n1n3] 
n2 n2n3 

n2n3 n~ 
~ [!1 ~1 ~1] 3 -1 1 1 

which is identical to the matrix equation derived in the case of matrix B. 
Hence, the solution is the same, i.e., 

thereby finding the invariant sought. 

Example 2.3.7 The vector and the trace of a rotation matrix Q, in a 
certain reference frame F, are given as 

Find the matrix representation of Q in the given coordinate frame and in 
a frame having its Z axis parallel to vect(Q). 

Solution: We shall resort to eq.(2.74a) to determine the rotation matrix 
Q. The quantities involved in the aforementioned representation of Q are 
readily computed, as shown below: 

from which Q follows: 

1 
[QlF= "3 

2 3 
Ilqll = 4' [ ~1 ~ ~] 

-1 -1 0 



www.manaraa.com

2.3 Rigid-Body Rotations 43 

in the given eoordinate frame. Now, let Z denote a eoordinate frame whose 
Z axis is parallel to q. Henee, 

V3n T 3 [~ 
0 

~] , [Q]z = V3 [~ 
-1 

~] [q]z =""2 ~ , [qq ]z = 4 0 0 
0 2 

0 

whieh readily leads to 

[ 1/2 -V3/2 

~] [Q]z = ~/2 1/2 
0 

and is in the Z-eanonieal form. 

Example 2.3.8 A procedure for trajectory planning produced a matrix 
representing a rotation for a certain piek-and-plaee operation, as shown 
below: 

[ Q] = x 0.866 -0.433 [
0.433 -0.500 z] 
0.866 y 0.500 

where x, y, and z are entries that are unrecognizable due to failures in the 
printing hardware. Knowing that Q is in fact a rotation matrix, find the 
missing entries. 

Solution: Sinee Q is a rotation matrix, the product P == QTQ should equal 
the 3 x 3 identity matrix, and det(Q) should be +1. The foregoing product 
is eomputed first: 

[
0.437 + z2 

[P]F= * 
* 

0.433(x - z - 1) O.5( -y + z) + 0.375] 
0.937 + x 2 0.866(x + y) - 0.216 

* 1 +y2 

where the entries below the diagonal have not been printed beeause the 
matrix is symmetrie. Upon equating the diagonal entries of the foregoing 
array to unity, we obtain 

x = ±0.250, y = 0, z = ±0.750 

while the vanishing of the off-diagonal entries leads to 

x = 0.250, y = 0, z = -0.750 

whieh ean be readily verified to produee det( Q) = + 1. 
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2.3.6 The Euler-Rodrigues Parameters 

The invariants defined so far, namely, the natural and the linear invariants 
of a rotation matrix, are not the only ones that are used in kinematics. 
Additionally, one has the Euler parameters, or Euler-Rodrigues parameters, 
as Cheng and Gupta (1989) propose that they should be called, represented 
here as rand ra. The Euler-Rodrigues parameters are defined as 

r=sin(~)e, 
2 

(2.75) 

One can readily show that Q takes on a quite simple form in terms of 
the Euler-Rodrigues parameters, namely, 

Q = (ra 2 - r . r)l + 2rrT + 2raR 

in which R is the cross-product matrix of r, i.e., 

for arbitrary x. 

R = 8(r x x) 
- 8x 

(2.76) 

Note that the Euler-Rodrigues parameters appear quadratically in the 
rotation matrix. Hence, these parameters cannot be computed with sim
ple sums and differences. A closer inspection of eq.(2.74b) rev~als that the 
linear invariants appear almost linearly in the rotation matrix. This means 
that the rotation matrix, as given by eq.(2.74b), is composed of two types 
of terms, namely, linear and rational. Moreover, the rational term is com
posed of a quadratic expression in the numerator and a linear expression 
in the denominator, the ratio thus being linear, which explains why the 
linear invariants can be obtained by sums and differences from the rotation 
matrix. 

The relationship between the linear invariants and the Euler-Rodrigues 
parameters can be readily derived, namely, 

- ±J1 +qa 
ra - 2' r=~ 2ra' 

(2.77) 

Furthermore, note that, if <p = 7r, then ra = 0, and formulae (2.77) fail 
to produce r. However, from eq.(2.75), 

For <p = 7r: r = e, ra = 0 (2.78) 

We now derive invariant relations between the rotation matrix and the 
Euler-Rodrigues parameters. To do this, we resort to the concept of ma
trix square raot. As a matter of fact, the square root of a square matrix is 
not hing but a particular case of an analytic junction of a square matrix, 
discussed in connection with Theorem 2.3.3 and the exponential represen
tation of the rotation matrix. Indeed, the square root of a square matrix is 
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an analytic function of that matrix, and hence, admits aseries expansion in 
powers ofthe matrix. Moreover, by virtue ofthe Cayley-Hamilton Theorem 
(Theorem 2.3.3) the said square root should be, for a 3 x 3 matrix, a linear 
combination of the identity matrix 1, the matrix itself, and its square, the 
coefficients being found using the eigenvalues of the matrix. 

Furthermore, from the geometrie meaning of a rotation through the angle 
cp ab out an axis parallel to the unit vector e, it is apparent that the square 
of the matrix representing the foregoing rotation is itself a rotation about 
the same axis, but through the angle 2cp. By the same token, the square 
root of the same matrix is again a rotation matrix about the same axis, 
but through an angle cp/2. Now, while the square of a matrix is unique, its 
square root is not. This faet is apparent for diagonalizable matrices, whose 
diagonal entries are their eigenvalues. Each eigenvalue, whether positive 
or negative, admits two square roots, and hence, a diagonalizable n x n 
matrix admits as many square roots as there are combinations of the two 
possible roots of individual eigenvalues, disregarding rearrangements of the 
latter. Such a number is 2n , and hence, a 3 x 3 matrix admits eight square 
roots. For example, the eight square roots of the identity 3 x 3 matrix are 
displayed below: 

o 
-1 
o ~ 1 ' -1 

o 
1 
o ~ 1 ' -1 [T 

o 
-1 
o 

o 
-1 
o 

In fact, the foregoing result can be extended to orthogonal matrices as 
well and, for that matter, to any square matrix with n linearly indepen
dent eigenvectors. That is, an n x n orthogonal matrix admits 2n square 
roots. However, not all eight square roots of a 3 x 3 orthogonal matrix are 
orthogonal. In fact, not all eight square roots of a 3 x 3 proper orthogonal 
matrix are proper orthogonal either. Of these square roots, nevertheless, 
there is one that is proper orthogonal, the one representing a rotation of 
cp/2. We will denote this partieular square root of Q by v'Q. The Euler
Rodrigues parameters of Q ean thus be expressed as the linear invariants 
of v'Q, namely, 

r = vect( /Q), tr( v'Q) - 1 
ro = ---2-'--- (2.79) 

It is important to reeognize the basic differences between the linear in
variants and the Euler-Rodrigues parameters. Whereas the former ean be 
readily derived from the matrix representation of the rotation involved by 
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simple additions and subtractions, the latter require square roots and en
tail sign ambiguities. However, the former fail to produce information on 
the axis of rotation whenever the angle of rotation is 7r, whereas the latter 
produce that information for any value of the angle of rotation. 

The Euler-Rodrigues parameters are nothing but the quaternians in
vented by Sir William Rowan Hamilton (1844) in an extraordinary moment 
of ereativity on Monday, 16 October 1843, as "Harnilton, aceompanied by 
Lady Hamilton, was walking along the Royal Canal in Dublin towards the 
Royal Irish Academy, where Hamilton was to preside a meeting." (Altmann, 
1989). 

Moreover, the Euler-Rodrigues parameters should not be confused with 
the Euler angles, which are not invariant and hence, admit multiple defi
nitions. The foregoing means that no single set of Euler angles exists for 
a given rotation matrix, the said angles depending on how the rotation 
is deeomposed into three simpler rotations. For this reason, Euler angles 
will not be stressed here. The reader is referred to Exereise 18 for a short 
discussion of Euler anglesj Synge (1960) includes a classieal treatment of 
the same. 

Example 2.3.9 Find the Euler-Rodrigues parameters of the proper orthog
onal matrix Q given as 

Q = ~ [-;1 ~1 ~ 1 
3 2 2 -1 

Solution: Sinee the given matrix is symmetrie, its angle of rotation is 7r 

and its vector linear invariant vanishes, which prevents us from finding 
the direction of the axis of rotation from the linear invariantsj moreover, 
expressions (2.77) do not apply. However, we can use eq.(2.49) to find the 
unit vector e parallel to the axis of rotation, i.e., 

or in component form, 

1 
eeT ="2(l+Q) 

:~:: 1 = ~ [~ ~ ~ 1 e5 3 1 1 1 

A simple inspection of the eomponents of the two sides of the above equa
tion reveals that all three components of e are identical and moreover, of 
the same sign, but we cannot tell which sign this iso Therefore, 
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Moreover, from the symmetry of Q, we know that cp = 7f, and henee, 

2.4 Composition of Reflections and Rotations 

As pointed out in Section 2.2, reflections oeeur often aeeompanied by rota
tions. The effeet of this eombination is that the rotation destroys the two 
properties of pure refleetions~symmetry and idempoteney. Indeed, let R 
be a pure refleetion, taking on the form appearing in eq.(2.5), and Q an 
arbitrary rotation, taking on the form of eq.(2.48). The produet of these 
two transformations, QR, denoted by T, is apparently neither symmetrie 
nor idempotent, as the reader ean readily verify. Likewise, the produet of 
these two transformations in the reverse order is neither symmetrie nor 
idempotent. 

As a eonsequenee of the foregoing diseussion, an improper orthogonal 
transformation that is not symmetrie ean always be deeomposed into the 
produet of a rotation and a pure reflection, the latter being symmetrie 
and idempotent. Moreover, this deeomposition ean take on the form of 
any of the two possible orderings of the rotation and the refleetion. Note, 
however, that onee the order has been seleeted, the deeomposition is not 
unique. Indeed, if we want to deeompose T in the above paragraph in to 
the produet QR, then we ean freely ehoose the unit normal n of the plane 
of reflection and write 

R=:: 1- 2nnT 

veetor n then being found from 

T 1 
nn = -(1- R) 

2 

Henee, the faetor Q of that deeomposition is obtained as 

Q = TR- 1 =:: TR = T - 2(Tn)nT 

where use has been made of the idempoteney of R. 

Example 2.4.1 Join the palms 0/ your two hands in the position adopted 
by swimmers when preparing tor plunging, while holding a sheet 0/ paper 
between them. The sheet defines a plane in each hand that we will call the 
hand plane, its unit normal, pointing outside 0/ the hand, being called the 
hand normal and represented as vectors nR and nL tor the right and left 
hand, respectively. Moreover, let 0R and OL denote unit vectors pointing 
in the direction 0/ the finger axes 0/ each 0/ the two hands. Thus, in the 



www.manaraa.com

48 2. Mathematical Background 

swimmer position described above, llL = -llR and 0L = 0R. Now, without 
moving your right hand, let the left hand attain a position whereby the 
left-hand normal lies at right angles with the right-hand normal, the palm 
pointing downwards and the finger axes of the two hands remaining parallel. 
Find the representation of the transformation carrying the right hand to the 
final configuration of the left hand, in terms of the unit vectors llR and 0R. 

Solution: Let us regard the desired transformation T as the product of a 
rotation Q by a pure reflection R, in the form T = QR. Thus, the trans
formation occurs so that the reflection takes place first, then the rotation. 
The reflection is simply that mapping the right hand into the left hand, 
and hence, the reflection plane is simply the hand plane, Le., 

Moreover, the left hand rotates from the swimmer position about an axis 
parallel to the finger axes through an angle of 90° clockwise from your 
viewpoint, i.e., in the positive direction of vector 0R. Hence, the form of 
the rotation involved can be readily derived from eq.(2.48) and the above 
information, namely, 

Q=ORO~+OR 

where OR is the cross-product matrix of 0R. Hence, upon performing the 
product QR, we have 

which is the transformation sought. 

2.5 Co ordinate Transformations and 
Homogeneous Coordinates 

Crucial to robotics is the unambiguous description of the geometrical re
lations among the various bodies in the environment surrounding a robot. 
These relations are established by means of coordinate frames, or frames, 
for brevity, attached to each rigid body in the scene, including the robot 
links. The origins of these frames, moreover, are set at landmark points 
and orient at ions defined by key geometrie entities like lines and planes. For 
example, in Chapter 4 we attach two frames to every moving link of aserial 
robot, with origin at a point on each of the axis of the two joints coupling 
this link with its two neighbors. Moreover, the Z-axis of each frame is de
fined, according to the Denavit-Hartenberg notation, introduced in that 
chapter, along each joint axis, while the X-axis of the frame closer to the 
base-termed the fore frame-is defined along the common perpendicular 
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to the two joint axes. The origin of the same frame is thus defined as the in
tersection of the fore axis with the common perpendicular to the two axes. 
This section is devoted to the study of the co ordinate transformations of 
vectors when these are represented in various frames. 

2.5.1 Coordinate Transformations Between Frames with a 
Common Origin 

We will refer to two coordinate frames in this section, namely, A = {X, Y, Z} 
and ß = {X, y, Z}. Moreover, let Q be the rotation carrying A into ß, 
i.e., 

Q: A -> ß (2.80) 

The purpose of l,his subsection is to establish the relation between the 
representations of the position vector of a point P in A and ß, denoted by 
[p JA and [p Ja, respectively. Let 

(2.81) 

We want to find [p Ja in terms of [p JA and Q, when the latter is represented 
in either frame. The co ordinate transformation can best be understood if 
we regard point P as attached to frame A, as if it were a point of a box 
with sides of lengths x, y, and z, as indicated in Fig. 2.2a. Now, frame A 
undergoes a rotation Q about its origin that carries it into a new attitude, 
that of frame ß, as illustrated in Fig. 2.2b. Point P in its rotated position 
is labeled ll, of position vector 7r, i.e., 

7r = Qp (2.82) 

It is apparent that the relative position of point P with respect to its box 
does not change under the foregoing rotation, and hence, 

(2.83) 

Moreover, let 

(2.84) 

The relation between the two representations of the position vector of any 
point of the 3-dimensional Euclidean space is given by 
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Theorem 2.5.1 The representations of the position vector 7r of any point 
in two fmmes A and B, denoted by [ 7r JA and [7r JB, respectively, are related 
by 

(2.85) 

Proof: Let us write eq.(2.82) in A: 

(2.86) 

Now, from Fig. 2.2b and eqs.(2.81) and (2.83) it is apparent that 

(2.87) 

Upon substituting eq.(2.87) into eq.(2.86), we obtain 

(2.88) 

q.e.d. Moreover, we have 

Theorem 2.5.2 The representations of Q carrying A into B in these two 
fmmes are identical, i. e., 

[QJA = [QJB (2.89) 

Proof: Upon substitution of eq.(2.82) into eq.(2.85), we obtain 

or 

Now, since Q is orthogonal, it is nonsingular, and hence, [Q JA can be 
deleted from the foregoing equation, thus leading to 

(2.90) 

However, by virtue of Theorem 2.5.1, the two representations of p observe 
the relation 

(2.91) 

the theorem being proved upon equating the right-hand sides of eqs.(2.90) 
and (2.91). 

Note that the foregoing theorem states a relation valid only for the con
ditions stated therein. The reader should not concIude from this result that 
rotation matrices have the same representations in every frame. This point 
is stressed in Example 2.5.1. Furthermore, we have 
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z z 

z y y 

y 

x 

(a) (b) 

FIGURE 2.2. Coordinate transformation: (a) coordinates of point P in the A
frame; and (b) relative orientation of frame B with respect to A. 

Theorem 2.5.3 The inverse relation of Theorem 2.5.1 is given by 

(2.92) 

Prao!: This is straight forward in light of the two foregoing theorems, and 
is left to the reader as an exercise. 

Example 2.5.1 Coordinate frames A and Bare shown in Fig. 2.3. Find 
the representations of Q ratating A in to B in these two frames and show 
that they are identical. Moreover, iJ[ p JA = [1, 1, 1 V, find [p JB. 

z 

p 

y 
A 0 
~ 

x z y 

FIGURE 2.3. Co ordinate frames A and B with a common origin. 
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Solution: Let i, j, and k be unit vectors in the directions of the X-, Y-, 
and Z-axes, respectively; unit vectors t, " and Kare defined likewise as 
parallel to the X-, y-, and Z-axes of Fig. 2.3. Therefore, 

Q i == t = -k, Qj ==, = -i, Q k == K = j 

Therefore, using Definition 2.2.1, the matrix representation of Q carrying 
A into B, in A, is given by 

[Q]A ~ Ul ~l ~l 
Now, in order to find [Q JB, we apply Q to the three unit vectors of B, t, 

" and K. Thus, for t, we have 

Likewise, 
Q, = -t, QK=, 

Again, from Definition 2.2.1, we have 

[Q]. ~ [~l T ~l ~ [Q]A 

thereby confirming Theorem 2.5.2. Note that the representation of this 
matrix in any other coordinate frame would be different. For example, if 
we represent this matrix in a frame whose X -axis is directed along the axis 
of rotation of Q, then we end up with the X-canonical representation of 
Q, namely, 

[QJx = [~ co~~ - s~n~l 
o sin~ cos~ 

with the angle of rotation ~ being readily computed as ~ = 1500 , which 
thus yields 

[
1 0 

[QJx= 0 -1/2 
o -/3/2 

-~/2l 
-1/2 

which apparently has different entries from those of [ Q JA and [Q JB found 
above. 

Now, from eq.(2.92), 

a result that can be readily verified by inspection. 
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2.5.2 Coordinate Transformation with Origin Shift 

Now, if the coordinate origins do not coincide, let b be the position vector 
of 0, the origin of B, from 0, the origin of A, as shown in Fig. 2.4. The 
corresponding co ordinate transformation from A to B, the counterpart of 
Theorem 2.5.1, is given below. 

Theorem 2.5.4 The representations of the position vector P of a point P 
of the Euclidean 3-dimensional space in two frames A and Bare related by 

[P]A = [b]A + [Q]A[7r]B 
[7r]B = [QT]B([ -b]A + [P]A) 

(2.93a) 

(2.93b) 

with b defined as the vector directed from the origin of A to that of B, and 
7r the vector directed from the origin of B to P, as depicted in Fig. 2.4. 

Proof: We have, from Fig. 2.4, 

p=b+7r (2.94) 

If we express the above equation in the A-frame, we obtain 

where 7r is assumed to be readily available in B, and so the foregoing 
equation must be expressed as 

[P]A = [b]A + [Q]A[7r]B 

which thus proves eq.(2.93a). To prove eq.(2.93b), we simply solve eq.(2.94) 
for 7r and apply eq.(2.92) to the equation thus resulting, which readily leads 
to the desired relation. 

Exalllpie 2.5.2 If [b JA = [-1, -1, -ljT and A and B have the relative 
orientations given in Example 2.5.1, find the position vector, in B, of a 
point P of position vector [P]A given as in the same example. 

Solution: What we obviously need is [7r ]B, which is given in eq.(2.93b). We 
thus compute first the sum inside the parentheses of that equation, i.e., 

I-b]A + ]p]A ~ m 
We need further [QT]B' which can be readily derived from [Q]B. We do 
not have as yet this matrix, but we have [QT ]A, which is identical to [Q]B 
by virtue of Theorem 2.5.2. Therefore, 

a result that the reader is invited to verify by inspection. 
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o?= ___ -.. 
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FIGURE 2.4. Coordinate frarnes with different origins. 

2.5.3 Homogeneous Coordinates 

The general coordinate transformation, involving a shift of the origin, is not 
linear, in general, as can be readily realized by virtue of the nonhomoge
neous term involved, i.e., the first term of the right-hand side of eq.(2.93a), 
which is independent of p. Such a transformation, nevertheless, can be rep
resented in homogeneous form if homogeneous coordinates are introduced. 
These are defined below: Let [p lM be the coordinate array of a finite point 
P in reference frame M. What we me an by a finite point is one whose co
ordinates are all finite. We are thus assuming that the point P at hand is 
not at infinity, points at infinity being dealt with later. The homogeneous 
coordinates of P are those in the 4-dimensional array {p} M, defined as 

(2.95) 

The affine transformation of eq.(2.93a) can now be rewritten in homo
geneous-coordinate form as 

(2.96) 

where {T}A is defined as a 4 x 4 array, i.e., 

(2.97) 

The inverse transformation of that defined in eq.(2.97) is derived from 
eq.(2.93a), i.e., 

(2.98) 
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Furthermore, homogeneous transformations can be concatenated. In
deed, let F k , for k = i - 1, i, i + 1, denote three co ordinate frames, with 
origins at Ok' Moreover, let Qi-1 be the rotation carrying F i- 1 into an ori
entation coinciding with that of F i . If a similar definition for Qi is adopted, 
then Qi denotes the rotation carrying F i into an orientation coinciding with 
that of Fi+l' First, the case in which all three origins coincide is considered. 
Clearly, 

[pli = [QLdi-dpli-1 

[pli+l = [Qfldpli = [QfldQL1li-1[pli-1 

the inverse relation of that appearing in eq.(2.100) being 

(2.99) 

(2.100) 

(2.101) 

If now the origins do not coincide, let ai-l and ai denote the vectors 
----+ ----+ 
Oi-lOi and OiOi+l, respectively. The homogeneous-coordinate transfor-
mations {Ti-di-1 and {Tdi thus arising are obviously 

whereas their inverse transformations are 

{T-1}. _ [[Q;li+l 
i 2+1 - [T 1 o i+l 

[QL1ld ~ai-1li-1 ] 

[Q; li+{ [ -ai li ] 

Hence, the coordinate transformations involved are 

{p}i-l = {Ti-lh-dp}i 

{p}i-1 = {Ti-1h-dTih{p}i+l 

the corresponding inverse transformations being 

[a; li ] 

(2.102) 

(2.103) 

(2.104) 

(2.105) 

(2.106) 

{p h = {Ti_\}i{ P h-l (2.107) 

{p }i+l = {Ti l }i+d p h = {Ti l }i+dTi-\h{ P }i-l (2.108) 

Now, if P lies at infinity, we can express its homogeneous coordinates in 
a simpler form. To this end, we rewrite expression (2.95) in the form 

and hence, 

lim {p}M = ( lim Ilpll) ( lim [[e 1M ]) 
Ilpll--+oo Ilpll--+oo 11 p--+ 00 11 1/llpll 
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or 

lim {p} - ( lim Ilpll) [[e lM ] 
IIpll->oo M - IIpll->oo 0 

We now define the homogeneous coordinates of a point P lying at injinity 
as the 4-dimensional array appearing in the foregoing expression, i.e., 

(2.109) 

which means that a point at infinity, in homogeneous coordinates, has only 
a direction, given by the unit vector e, but an undefined location. When 
working with objects within the atmosphere of the earth, for example, stars 
can be regarded as lying at infinity, and hence, their location is completely 
specified simply by their longitude and latitude, which suffice to define the 
direction eosines of a unit vector in spherical coordinates. 

On the other hand, a rotation matrix can be regarded as composed of 
three columns, each representing a unit vector, e.g., 

where the triad {ek H is orthonormal. We can thus represent {T} A of 
eq.(2.97) in the form 

~] (2.110) 

thereby concluding that the columns of the 4 x 4 matrix T represent the 
homogeneous coordinates of a set of corresponding points, the first three 
of which are at infinity. 

Example 2.5.3 An ellipsoid is centered at a point OB of position vector 
b, its three axes X, y, and Z dejining a coordinate frame B. Moreover, its 
semiaxes have lengths a = 1, b = 2, and c = 3, the coordinates of OB in 
a coordinate frame A being [b lA = [1, 2, 3 V. Additionally, the direction 
eosines of X are (0.933, 0.067, -0.354), whereas Y is perpendicular to b 
and to the unit vector u that is parallel to the X axis. Find the equation of 
the ellipsoid in A. (This example has relevance in collision-avoidance algo
rithms, some of which approximate manipulator links as ellipsoids, thereby 
easing tremendously the computational requirements.) 

Solution: Let u, v, and w be unit vectors parallel to the X, Y, and Z axes, 
respectively. Then, 

[ 
0.933] 

[ulA = 0.067 
-0.354 

v= 
uxb 

lIu x bll' 
w=uxv 
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and hence, 

[ 
0.243] 

[VJA = -0.843 , 
0.481 

[
-0.266] 

[w JA = -0.535 
-0.803 

from which the rotation matrix Q, rotating the axes of A into orientations 
coinciding with those of 13, can be readily represented in A, or in 13 for that 
matter, as 

[
0.933 0.243 -0.266] 

[Q JA = [u, v, w JA = 0.067 -0.843 -0.535 
-0.354 0.481 -0.803 

On the other hand, if the coordinates of a point P in A and 13 are [p JA = 
[P1, P2, P3f and [7rJB = [71"1, 71"2, 7I"3JT, respectively, then the equation of 
the ellipsoid in 13 is c1early 

13: 7I"r 7I"~ 7I"~ 
]2 + 22 + 32 = 1 

Now, what is needed in order to derive the equation of the ellipsoid in A is 
simply a relation between the coordinates of P in 13 and those in A. These 
coordinates are related by eq.(2.93b), which requires [QT JB, while we have 
[Q JA. Nevertheless, by virtue of Theorem 2.5.2 

Hence, 

[ 
0.933 0.067 -0.354] 

[QT JB = [QT JA = 0.243 -0.843 0.481 
-0.266 -0.535 -0.803 

[ 
0.933 

[ 7r JB = 0.243 
-0.266 

0.067 
-0.843 
-0.535 

-0.354] 
0.481 

-0.803 

Therefore, 

71"1 = 0.933p1 + 0.067p2 - 0.354p3 - 0.005 

71"2 = 0.243p1 - 0.843p2 + 0.481p3 

71"3 = -0.266p1 - 0.535p2 - 0.803p3 + 3.745 

Substitution of the foregoing relations into the ellipsoid equation in 13 leads 
to 

A: 32.1521p1 2 + 7.70235p2 2 + 9.17286pl- 8.30524p1 - 16.0527p2 

-23.9304p3 + 9.32655P1P2 + 9.02784P2P3 - 19.9676p1P3 + 20.101 = 0 

which is the equation sought, and which was obtained using computer 
algebra. 
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2.6 Similarity Transformations 

Transformations of the position vector of points under a change of COOr
dinate frame involving both a translation of the origin and a rotation of 
the coordinate axes was the main subject of Section 2.5. In this section, we 
study the transformations of components of vectors other than the position 
vector, while extending the concept to the transformation of matrix entries. 
How these transformations take place is the subject of this section. 

What is involved in the present discussion is a change of basis of the as
sociated vector spaces, and hence, this is not limited to 3-D vector spaces. 
That is, n-dimensional vector spaces will be studied in this section. More
over, only isomorphisms, Le., transformations L ofthe n-dimensional vector 
space V onto itself will be considered. Let A = {adl' and B = {bdl' be 
two different bases of the same space V. Hence, any vector v of V can be 
expressed in either of two ways, namely, 

v = Ctl al + Ct2a2 + ... + Ctn<ln 

V = ß1b1 + ß2b2 + ... + ßnbn 

from which two representations of v are readily derived, namely, 

Furthermore, let the two foregoing bases be related by 

b j = aljal + a2ja2 + ... + anjan , j = 1, ... , n 

(2.111) 

(2.112) 

(2.113) 

(2.114) 

Now, in order to find the relations hip between the two representations 
of eq.(2.113), eq.(2.114) is substituted into eq.(2.112), which yields 

v = ßl(anal + a21a2 + ... + anlan ) 

+ ß2(a12a l + a22a2 + ... + an2an) 

(2.115) 

This can be rearranged to yield 

v = (anßl + a12ß2 + ... + alnßn)al 

+ (a21ßl + a22ß2 + ... + a2nßn)a2 

(2.116) 
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Comparing eq.(2.116) with eq.(2.111), one readily derives 

(2.117) 

where 

[

an a12 

a21 a22 

[A]A= : : 

an l an 2 

... aln 1 

... a2n 

. . 
. . 

... ann 

(2.118) 

wh ich are the relations sought. Clearly, the inverse relationship of eq.(2.117) 
is 

(2.119) 

Next, let L have the representation in A given below: 

[

ln h2 
l21 l22 

[L]A = : : 

lnl ln2 

... hn 1 

. . . l2n 

. . 
. . 

... lnn 

(2.120) 

Now we aim at finding the relationship between [L]A and [L]B. To this 
end, let w be the image of v under L, i.e., 

Lv=w 

which can be expressed in terms of either A or ß as 

[L]A[V]A = [W]A 
[L]B[v]B = [W]B 

(2.121) 

(2.122) 

(2.123) 

Now we assume that the image vector W of the transformation of eq.(2.121) 
is identical to that of vector v in the range of L, which is not always the 
case. Our assumption is, then, that similar to eq.(2.117), 

(2.124) 

Now, substitution of eq.(2.124) into eq.(2.122) yields 

(2.125) 

which can be readily rearranged in the form 

(2.126) 

Comparing eq.(2.123) with eq.(2.126) readily leads to 

(2.127) 
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which upon rearrangement, becomes 

(2.128) 

Relations (2.117), (2.119), (2.127), and (2.128) constitute what are called 
similarity transformations. These are important because they preserve in
variant quantities such as the eigenvalues and eigenvectors of matrices, the 
magnitudes of vectors, the angles between vectors, and so on. Indeed, one 
has 

Theorem 2.6.1 The characteristic polynomial of a given n x n matrix re
mains unchanged under a similarity transformation. Moreover, the eigen
values of two matrix representations of the same n x n linear transformation 
are identical, and if [e]B is an eigenvector of [L ]B, then under the sim
ilarity transformation (2.128), the corresponding eigenvector of [L]A is 
[e]A = [A]A[ e ]B. 

Proof: From eq.(2.11), the characteristic polynomial of [L]B is 

P(A) = det(A[ 1]B - [L ]B) 

which can be rewritten as 

But 

P(A) == det(A[ A -l]A[ 1]A[ A]A - [A -l]A[ L ]A[ A ]A) 
= det([ A -l]A(A[ 1]A - [L ]A)[ A ]A) 
= det([ A -l]A)det(A[ 1]A - [L ]A)det([ A ]A) 

det([A -l]A)det([A]A) = 1 

(2.129) 

and hence, the characteristic polynomial of [L]A is identical to that of 
[L ]B. Since both representations have the same characteristic polynomial, 
they have the same eigenvalues. Now, if [e]B is an eigenvector of [L]B 
associated with the eigenvalue A, then 

Next, eq.(2.127) is substituted into the foregoing equation, which thus leads 
to 

Upon rearrangement, this equation becomes 

(2.130) 

whence it is apparent that [A ]A[ e]B is an eigenvector of [L]A associated 
with the eigenvalue A, q.e.d. 
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Theorem 2.6.2 If [L]A and [L]B are related by the similarity transfor
mation (2.127), then 

for any integer k. 

Praof: This is done by induction. For k = 2, one has 

[L2 ]B == [A-I]A[L]A[A]A[A-I]A[L]A[A]A 
= [A-I ]A[L2 ]A[A]A 

Now, assurne that the proposed relation holds far k = n. Then, 

[Ln+I]B == [A-I]A[Ln]A[A]A[A-I]A[L]A[A]A 
= [A -1]A[Ln+l]A[A]A 

(2.131) 

i.e., the relation also holds for k = n + 1, thereby completing the proof. 

Theorem 2.6.3 The trace of an n x n matrix does not change under a 
similarity transformation. 

Praof: A preliminary relation will be needed: Let [A], [B] and [C] be 
three different n x n matrix arrays, in a given reference frame, that need 
not be indicated with any subscript. Moreover, let aij, bij , and Cij be the 
components of the said arrays, with indices ranging from 1 to n. Hence, 
using standard index notation, 

(2.132) 

Taking the trace of both sides of eq.(2.127) and applying the foregoing 
result pro duces 

tr([L ]B) = tr([ A -I]A[L ]A[A]A) = tr([ A ]A[A -I]A[L ]A) = tr([L ]A) 
(2.133) 

thereby proving that the trace remains unchanged under a similarity trans
formation. 

Example 2.6.1 We consider the equilateral tri angle sketched in Fig. 2.5, 
of side length equal to 2, with vertices PI, P2 , and P3 , and coordinate 
frames A and B ofaxes X, Y and X', Y', respectively, both with origin at 
the centraid of the triangle. Let P be a 2 x 2 matrix defined by 

with Pi denoting the position vector of Pi in a given coordinate frame. Show 
that matrix P does not obey a similarity transformation upon a change of 
frame, and compute its trace in frames A and B to make it apparent that 
this matrix does not comply with the conditions of Theorem 2.6.3. 
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Y' 

r H ix 
:13 

FIGURE 2.5. Two coordinate frarnes used to represent the position vectors of 
the corners of an equilateral triangle. 

Solution: From the figure it is apparent that 

Apparently, 

2v'3 v'3 
tr([P]A) = 1 + -3- =Je tr([P]B) = 3 

The reason why the trace of this matrix did not remain unchanged under 
a co ordinate transformation is that the matrix does not obey a similarity 
transformation under a change of coordinates. Indeed, vectors Pi change 
as 

under a change of coordinates from ß to A, with Q denoting the rotation 
carrying A into ß. Hence, 

which is different from the similarity transformation of eq.(2.128). However, 
if we now define 

then 

and hence, 

R:=PpT 

-v'3/3] 
5/3 ' [ 1 v'3/3] 

[R]B = v'3/3 5/3 

8 
tr([R]B) = 3 
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thereby showing that R does comply with the conditions of Theorem 2.6.3. 
Indeed, under a change of frame, matrix R changes as 

which is indeed a similarity transformation. 

2.7 Invariance Concepts 

From Example 2.6.1 it is apparent that certain properties, like the trace, 
of certain square matrices do not change under a co ordinate transforma
tion. For this reason, a matrix like R of that example is said to be frame
invariant, or simply invariant, whereas matrix P of the same example is 
not. In this section, we formally define the concept of invariance and high
light its applications and its role in robotics. Let a scalar, a vector, and 
a matrix function of the position vector p be denoted by f(p), f(p) and 
F(p), respectively. The representations of f(p) in two different co ordinate 
frames, labelled A and ß, will be indicated as [f(p)JA and [f(P)JB' respec
tively, with a similar notation for the representations of F(p). Moreover, 
let the two frames differ both in the location of their origins and in their 
orientations. Additionally, let the proper orthogonal matrix [QJA denote 
the rotation of co ordinate frame A into ß. Then, the scalar function f(p) 
is said to be frame invariant, or invariant for brevity, if 

(2.134) 

Moreover, the vector quantity fis said to be invariant if 

(2.135) 

and finally, the matrix quantity F is said to be invariant if 

(2.136) 

Thus, the difference in origin location becomes irrelevant in this context, 
and hence, will no longer be considered. From the foregoing discussion, it 
is clear that the same vector quantity has different components in differ
ent coordinate frames; moreover, the same matrix quantity has different 
entries in different coordinate frames. However, certain scalar quantities 
associated with vectors, e.g., the inner product, and matrices, e.g., the ma
trix moments, to be defined presently, remain unchanged under a change 
of frame. Additionally, such vector operations as the cross product of two 
vectors are invariant. In fact, the scalar product of two vectors a and b 
remains unchanged under a change of frame, i.e., 

(2.137) 
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Additionally, 
(2.138) 

The kth moment of an n x n matrix T, denoted by I k , is defined as 
(Leigh, 1968) 

Ik == tr(Tk ), k = 0,1, ... 

where I o = tr(l) = n. Now we have 

(2.139) 

Theorem 2.7.1 If the trace of an n x n matrix T is invariant, then so 
are its moments. 

Proof: This is straightforward. Indeed, from Theorem 2.6.2, we have 

(2.140) 

Now, if the traee of T is invariant, the invarianee of the moments follows 
from that of the traee, q.e.d. 

Furthermore, 

Theorem 2.7.2 An nxn matrix has only n linearly independent moments. 

Proof: Let the eharaeteristic polynomial of T be 

(2.141) 

Upon applieation of the Cayley-Hamilton Theorem, eq.(2.141) leads to 

(2.142) 

where 1 denotes the n x n identity matrix. 
Now, ifwe take the traee ofboth si des of eq.(2.142), and Definition (2.139) 

is reealled, one has 

from which it is apparent that In ean be expressed as a linear eombination 
of the first n moments of T. By simple induetion, one ean likewise prove 
that the mth moment is dependent upon the first n moments if m 2: n, 
thereby eompleting the proof. 

The vector invariants of an n x n matrix are its eigenvectors, whieh have 
physical signifieanee in the ease of symmetrie matriees. The eigenvalues of 
these matrices are all real, its eigenveetors being also real and mutually 
orthogonal. Skew-symmetrie matriees, in general, need not have either real 
eigenvalues or real eigenveetors. However, if we limit ourselves to 3 x 3 skew
symmetrie matriees, exaetly one of their eigenvalues, and its assoeiated 
eigenveetor, are both real. The eigenvalue ofinterest is 0, and the assoeiated 
veetor is the axial veetor of the matrix under study. 
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Although in general, the n linearly independent moments of an n x n ar
bitrary matrix do not suffiee to eharaeterize the transformation represented 
by this matrix, they do suffiee in the ease of symmetrie matriees. That is, 
if two symmetrie n x n matriees have their first n moments identieal, then 
they represent the same transformation, although in different co ordinate 
frames. 

In order to show that the moments do not fully eharaeterize n x n matriees 
if these are not symmetrie, we produee below a eounterexample. Consider 
the matrix 

A= [~ ~] 
Its two first moments are I o = 2, I I = tr(A) = 2, whieh happen to be the 
first two moments of the 2 x 2 identity matrix as well. However, while the 
identity matrix leaves all 2-dimensional vectors unehanged, the matrix A 
does not. 

Now, if two symmetrie rnatriees, say A and B, represent the same trans
formation, they are related by a similarity transformation, i.e., a nonsin
gular matrix T exists such that 

B = T-IAT 

Given A and T, then, finding B is trivial, a similar statement holding 
if Band T are given; however, if A and Bare given, finding T is more 
diffieult. The latter problem oeeurs frequently in roboties in the eontext of 
ealibration, to be diseussed in Subseetion 2.7.1. 

Example 2.7.1 Two symmetrie matriees are displayed below. Find out 
whether they are related by a similarity transformation. 

Solution: The traees of the two matriees are apparently identieal, namely, 
4. What we are left with is to determine if their seeond moments are also 
identieal. To aeeomplish this, we need the square of the two matriees, from 
whieh it is straightforward to eompute their traces. Thus, from 

we readily obtain 
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and hence, the two matrices are related by a similarity transformation. 
Moreover, their third- and higher-order moments are identical as weH. As 
a matter of verification, we compute their third moments below. From 

~ 1 ' 13 

we obtain 

Example 2.7.2 Same as Example 2.7.1, for the two matrices displayed 
below: 

1 
1 
o ~l 

Solution: As in the previous example, the traces of these matrices are iden
tical, i.e., 2. However, tr(A 2) = 10, while tr(B2) = 6. We thus conclude 
that the two matrices cannot be related by a similarity transformation. 

2.7.1 Applications to Redundant Sensing 

A sensor, such as a camera or a range finder, is often mounted on a robotic 
end-effector to determine the pose---i.e., the position and orientation, as 
defined in Subsection 3.2.3-of an object. If redundant sensors are intro
duced, and we attach frames A and 8 to each of these, then each sensor 
can be used to determine the orientation of the end-effector with respect to 
a reference configuration. This is a simple task, for all that is needed is to 
measure the rotation R that each of the foregoing frames underwent from 
the reference configuration, in which these frarnes are denoted by An and 
80, respectively. Let us assurne that these measurements produce the or
thogonal matrices A and B, representing R in A and 8, respectively. With 
this information we would like to determine the relative orientation Q of 
frame 8 with respect to frame A, a problem that is called here instrument 
calibration. 

We thus have A == [RJA and B == [RJB, and hence, the algebraic 
problem at hand consists in determining [Q JA or equivalently, [Q JB. The 
former can be obtained from the similarity transformation of eq.(2.136), 
which leads to 

or 
A[QJA = [QJAB 

This problem could be solved if we had three invariant vectors associated 
with each of the two matrices A and B. Then, each corresponding pair of 
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vectors of these triads would be related by eq.(2.135), thereby obtaining 
three such vector equations that should be sufficient to compute the nine 
components of the matrix Q rotating frame A into B. However, since A 
and B are orthogonal matrices, they admit only one real invariant vector, 
namely, their axial vector, and we are short of two vector equations. We 
thus need two more invariant vectors, represented in both A and B, to 
determine Q. The obvious way of obtaining one additional vector in each 
frame is to take not one, but two measurements of the orientation of Ao 
and Bo with respect to A and B, respectively. Let the matrices representing 
these orient at ions be given, in each of the two co ordinate frames, by Ai 
and Bi, for i = 1,2. Moreover, let ai and b i , for i = 1,2, be the axial 
vectors of matrices Ai and Bi, respectively. 

Now we have two possibilities: (i) neither of a1 and a2 and, consequently, 
neither of b 1 and b 2 , is zero; and (ii) at least one of a1 and a2, and 
consequently, the corresponding vector of the {b1 , b 2 } pair, vanishes. In 
the first case, not hing prevents us from computing a third vector of each 
set, namely, 

(2.143) 

In the second case, however, we have two more possibilities, i.e., the angle 
of rotation ofthat orthogonal matrix, Al or A 2 , whose axial vector vanishes 
is either 0 or 7r. If the foregoing angle vanishes, then A underwent a pure 
translation from Ao, the same holding, of course, for Band Bo. This means 

® 

CD 

FIGURE 2.6. Measuring the orientation of a camera-fixed coordinate frame with 
respect to a frame fixed to a robotic end-effector. 
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that the corresponding measurement becomes useless for our purposes, and 
a new measurement is needed, involving a rotation. If, on the other hand, 
the same angle is 7r, then the associated rotation is symmetrie and the unit 
vector e parallel to its axis can be determined from eq.(2.49) in both A 
and 13. This unit vector, then, would play the role of the vanishing axial 
vector, and we would thus end up, in any event, with two pairs of nonzero 
vectors, {ai Hand {bi H. As a consequence, we can always find two triads 
of nonzero vectors, {~ Hand {bi H, that are related by 

(2.144) 

The problem at hand now reduces to computing [Q JA from eq.(2.144). In 
order to perform this computation, we write the three foregoing equations 
in matrix form, namely, 

(2.145) 

with E and F defined as 

(2.146) 

Now, by virtue of the form in which the two vector triads were defined, 
none of the two above matriees is singular, and hence, we have 

(2.147) 

Moreover, note that the inverse of F can be expressed in terms of its 
columns explicitly, without introducing components, if the concept of re
ciprocal bases is recalled (Brand, 1955). Thus, 

(2.148) 

Therefore, 

(2.149) 

thereby completing the computation of [Q JA directly and with simple 
vector opemtions. 

Example 2.7.3 (Hand-Eye Calibration) Determine the relative orienta
tion of a fmme 13 attached to a camem mounted on a robot end-effector, 
with respect to a fmme A fixed to the latter, as shown in Fig. 2.6. It is as
sumed that two measurements of the orientation of the two fmmes with re
spect to fmmes Ao and 130 in the reference configumtion of the end-effector 
are available. These measurements produce the orientation matrices Ai of 
the fmme fixed to the camem and Bi of the fmme fixed to the end-effector, 
for i = 1,2. The numerical da ta of this example are given below: 
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[ -0.92592593 -0.37037037 -0.07407407] 
A1 = 0.28148148 -0.80740741 0.51851852 

-0.25185185 0.45925926 0.85185185 

[ -0.83134406 0.02335236 -0.55526725] 
A2 = -0.52153607 0.31240270 0.79398028 

0.19200830 0.94969269 -0.24753503 

[ -0.90268482 0.10343126 -0.41768659] 
B 1 = 0.38511568 0.62720266 -0.67698060 

0.19195318 -0.77195777 -0.60599932 

[ -0.73851280 -0.54317226 0.39945305] 
B 2 = -0.45524951 0.83872293 0.29881721 

-0.49733966 0.03882952 -0.86668653 

Solution: Shiu and Ahmad (1987) formulated this problem in the form 
of a matrix linear homogeneous equation, while Chou and Kamel (1988) 
solved the same problem using quaternions and very cumbersome numeri
cal methods that involve singular-value computations; the latter require an 
iterative procedure within a Newton-Raphson method, itself iterative, for 
nonlinear-equation solving. Other attempts to solve the same problem have 
been reported in the literature, but these also resorted to extremely com
plicated numerical procedures for nonlinear-equation solving (Chou and 
Kamel, 1991). More recently, Horaud and Dornailm (1995) proposed a more 
concise method based on quaternions, a.k.a. Euler-Rodrigues parameters, 
that nevertheless is computationally costlier than the method we use here. 
The approach outlined in this subsection is essentially the same as that 
proposed earlier (Angeles, 1989), although here we have adopted a simpler 
procedure than that of the foregoing reference. 

First, the vector of matrix Ai, represented by ai, and the vector of matrix 
Bi, represented by b i , for i = 1,2, are computed from simple differences of 
the off-diagonal entries of the foregoing matrices, followed by a division by 
2 of all the entries thus resulting, which yields 

[
-0.02962963] 

al = 0.08888889 , 
0.32592593 

[
-0.04748859] 

b 1 = -0.30481989 , 
0.14084221 

[ 
0.07784121 ] 

a2 = -0.37363778 
-0.27244422 

[
-0.12999385] 

b 2 = 0.44869636 
0.04396138 

In the calculations below, 16 digits were used, but only eight are dis
played. Furthermore, with the foregoing vectors, we compute a3 and b 3 



www.manaraa.com

70 2. Mathematical Background 

from cross products, thus obtaining 

[
0.09756097] 

a3 = 0.01730293 
0.00415020 

[
-0.07655343] 

b 3 = -0.01622096 
-0.06091842 

Furthermore, ~ is obtained as 

~ = 0.00983460 

while the individual rank-one matrices inside the brackets of eq.(2.149) are 
calculated as 

[ 0.00078822 0.00033435 -0.00107955] 
al(b2 x b3f = -0.00236467 -0.00100306 0.00323866 

-0.00867044 -0.00367788 0.01187508 

[ -0.00162359 0.00106467 0.00175680 ] 
a2(b3 x b1f = 0.00779175 -0.00510945 -0.00843102 

0.00568148 -0.00372564 -0.00614762 

[ -0.00746863 -0.00158253 -0.00594326] 
a3(b1 x b2f = -0.00132460 -0.00028067 -0.00105407 

-0.00031771 -0.00006732 -0.00025282 

whence Q in the A frame is readily obtained as 

[
-0.84436553 -0.01865909 -0.53545750] 

[Q JA = 0.41714750 -0.65007032 -0.63514856 
-0.33622873 -0.75964911 0.55667078 

thereby completing the desired computation. 
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3 
Fundamentals of Rigid-Body 
Mechanics 

3.1 Introd uction 

The purpose of this chapter is to lay down the foundations of the kineto
statics and dynamics of rigid bodies, as needed in the study of multibody 
mechanical systems. With this background, we study the kinetostatics and 
dynamics of robotic manipulators of the serial type in Chapters 4 and 6, 
respectively, while devoting Chapter 5 to the study of trajeetory planning. 
The latter requires, additionally, the background of Chapter 4. A special 
feature of this chapter is the study of the relations between the angular 
velocity of a rigid body and the time-rates of change of the various sets 
of rotation invariants introduced in Chapter 2. Similar relations between 
the angular acceleration and the second time-derivatives of the rotation 
invariants are also recalled, the eorresponding derivat ions being outlined in 
Appendix A. 

Furthermore, an introduction to the very useful analysis tool known as 
screw theory (Roth, 1984) is included. In this eontext, the eoneepts of twist 
and wreneh are introdueed, that prove in subsequent ehapters to be ex
tremely useful in deriving the kinematie and statie, i.e., the kinetostatic, 
relations among the various bodies of multibody meehanieal systems. 
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3.2 General Rigid-Body Motion and Its 
Associated Screw 

In this section, we analyze the general motion of a rigid body. Thus, let A 
and P be two points of the same rigid body B, the former being a particular 
reference point, whereas the latter is an arbitrary point of B. Moreover, the 
position vector of point A in the original configuration is a, and the position 
vector of the same point in the displaced configuration, denoted by A', is 
a'. Similarly, the position vector of point P in the original configuration is 
p, while in the displaced configuration, denoted by P', its position vector is 
p'. Furthermore, p' is to be determined, while a, a', and p are given, along 
with the rotation matrix Q. Vector p - a can be considered to undergo a 
rotation Q about point A throughout the motion taking the body from the 
original to the final configuration. Since vector p - a is mapped into p' - a' 
under the above rotation, one can write 

p' - a' = Q(p - a) (3.1) 

and hence, 
p' = a' + Q(p - a) (3.2) 

which is the relationship sought. Moreover, let dA and d p denote the 
displacements of A and P, respectively, i.e., 

dA == a' - a, d p == p' - p (3.3) 

Prom eqs.(3.2) and (3.3) one can readily obtain an expression for d p , 

namely, 

dp = a' - p + Q(p - a) 

= a' - a - p + Q(p - a) + a 

= dA + (Q - l)(p - a) 

(3.4) 

(3.5) 

What eq.(3.5) states is that the displacement of an arbitrary point P of 
a rigid body whose position vector in an original configuration is p is de
termined by the displacement of one certain point A and the concomitant 
rotation Q. Clearly, once the displacement of P is known, its position vec
tor p' can be readily determined. An interesting result in connection with 
the foregoing discussion is summarized below: 

Theorem 3.2.1 The component 01 the displacements 01 all the points 01 
a rigid body undergoing a general motion along the axis 01 the underlying 
rotation is a constant. 

Proof: Multiply both sides of eq.(3.5) by eT , the unit vector parallel to the 
axis of the rotation represented by Q, thereby obtaining 
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Now, the second term of the right-hand side of the above equation vanishes 
because Qe = e, and hence, QT e = e, by hypothesis, the said equation 
thus leading to 

(3.6) 

thereby showing that the displacements of all points of the body have the 
same projection do onto the axis of rotation, q.e.d. 

As a consequence of the foregoing result, we have the classical Mozzi
Chasles Theorem (Mozzi, 1763; Chasles, 1830; Ceccarelli, 1995), namely, 

Theorem 3.2.2 (Mozzi, 1763; Chasles, 1830) Given a rigid body under
going a general motion, a set 01 its points located on a line L undergo 
identical displacements 01 minimum magnitude. Moreover, line Land the 
minimum-magnitude displacement are parallel to the axis 01 the rotation 
involved. 

Proof: The proof is straight forward in light of Theorem 3.2.1, which al
lows us to express the displacement of an arbitrary point P as the sum of 
two orthogonal components, namely, one parallel to the axis of rotation, 
independent of P and denoted by d ll , and one perpendicular to this axis, 
denoted by d.L, i.e., 

dp = dll +d.L (3.7a) 

where 
(3.7b) 

and clearly, do is a constant that is defined as in eq.(3.6), while dll and d.L 
are mutually orthogonaL Indeed, 

dll . d.L = doeT (1- eeT)d p = do(eT - eT)d p = 0 

Now, by virtue of the orthogonality of the two components of d p , it is 
apparent that 

for the displacement d p of any point ofthe body. Now, in order to minimize 
lidpli we have to make Ild.Lll, and hence, d.L itself, equal to zero, i.e., we 
must have d p parallel to e: 

dp =Qe 

for a certain scalar Q. That is, the displacements of minimum magnitude 
of the body under study are parallel to the axis of Q, thereby proving the 
first part of the Mozzi-Chasles Theorem. The second part is also readily 
proven by noticing that if P* is a point of minimum magnitude of position 
vector p* , its component perpendicular to the axis of rotation must vanish, 
and hence, 

d:!. == (1 - eeT)dp * 

= (1 - eeT ) [dA + (1 - eeT)(Q - 1)(p* - a)] = 0 
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Upon expansion of the above expression for d:"u the foregoing equation 
leads to 

(1 - eeT)dA + (Q - l)(p* - a) = 0 

Now it is apparent that if we define a line .c passing through P* and parallel 
to e, then the position vector p* + Ae of any of its points P satisfies the 
foregoing equation. As a consequence, all points of minimum magnitude lie 
in a line parallel to the axis of rotation of Q, q.e.d. 

An important implication of the foregoing theorem is that a rigid body 
can attain an arbitrary configuration from a given original one, following a 
screw-like motion ofaxis .c and pitch p, the latter being defined presently. 
Thus, it seems appropriate to call .c the screw axis of the rigid-body motion. 

Note that do, as defined in eq.(3.6), is an invariant of the motion at hand. 
Thus, associated with a rigid-body motion, one can then define a screw of 
axis .c and pitch p. Of course, the pitch is defined as 

_ do dJ:e 
p=-=-

cl> cl> 

27rdo 
or p=--

ci> 
(3.8) 

which has units of rn/rad or correspondingly, of rn/turn. Moreover, the 
angle cl> of the rotation involved can be regarded as one more feature of this 
motion. This angle is, in fact, the amplitude associated with the said motion. 
We will come across screws in discussing velocities and forces acting on rigid 
bodies, along with their pitches and amplitudes. Thus, it is convenient to 
introduce this concept at this stage. 

3.2.1 The Screw of a Rigid-Body Motion 

The screw axis .c is totally specified by a given point Po of .c that can be 
defined, for example, as that lying dosest to the origin, and a unit vector 
e defining its direction. Expressions for the position vector of Po, Po, in 
terms of a, a' and Q, are derived below: 

If Po is defined as above, i.e., as the point of.c lying dosest to the origin, 
then, obviously, Po is perpendicular to e, i.e., 

(3.9) 

Moreover, the displacement d o of Po is parallel to the vector of Q, and 
hence, is identical to dll defined in eq.(3.7b), i.e., it satisfies 

(Q-1)do =O 

where d o is given as in eq.(3.5), namely, as 

d o = dA + (Q - l)(po - a) (3.lOa) 

Now, since d o is identical to d ll , we have, from eq.(3.7b), 
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But from Theorem 3.2.1, 

and so 
dA + (Q - 1)(po - a) = eeT dA 

or after rearranging terms, 

(Q - 1)po = (Q - 1)a - (1 - eeT)dA (3.lOb) 

Furthermore, in order to find an expression for Po, eq.(3.9) is adjoined to 
eq.(3.lOb), thereby obtaining 

Apo =b (3.11) 

where A is a 4 x 3 matrix and b is a 4-dimensional vector, being given by 

_ [Q -1] A= eT , (3.12) 

Equation (3.11) cannot be solved for Po directly, because A is not a square 
matrix. In fact, that equation represents an overdetermined system of four 
equations and three unknowns. Thus, in general, that system does not 
admit a solution. However, the four equations are compatible, and hence 
in this particular case, a solution of that equation, which turns out to be 
unique, can be determined. In fact, if both sides of eq.(3.11) are multiplied 
from the left by AT, we have 

(3.13) 

Moreover, if the product AT A, which is a 3 x 3 matrix, is invertible, then 
Po can be computed from eq.(3.13). In fact, the said product is not only 
invertible, but also admits an inverse that is rather simple to derive, as 
shown below. Now the rotation matrix Q is recalled in terms of its natural 
invariants, namely, the unit vector e parallel to its axis of rotation and the 
angle of rotation ep about this axis, as given in eq.(2.48), reproduced below 
for quick reference: 

Q = eeT + cos ep(1 - eeT ) + sin epE 

where 1 represents the 3 x 3 identity matrix and E thc cross-product ma
trix of e, as introduced in eq.(2.37). Further, eq.(2.48) is substituted into 
eq.(3.12), which yields 

AT A = 2(1 - cos ep)1 - (1 - 2 cos ep )eeT (3.14) 

It is now apparent that the foregoing product is a linear combination of 1 
and eeT . This suggests that its inverse is very likely to be a linear com
bination of these two matrices as weIl. If this is in fact true, then one can 
write 

(3.15) 
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coefficients a and ß being determined from the condition that the product 
of AT A by its inverse should be 1, which yields 

and hence, 

1 a- -,----.,.. 
- 2(1- cos4>)' 

ß= 1-2cos4> 
2(1-cos4» 

(ATA)-I 1 1-2cos4> T = 1+ ee 
2(1- cos4» 2(1- cos4» 

On the other hand, 

(3.16) 

(3.17) 

(3.18) 

Upon solving eq.(3.13) for Po and substituting relations (3.17) and (3.18) 
into the expression thus resulting, one finally obtains 

(Q - I)T(Qa - a') 
Po = 2(1 _ cos4» , for 4> i 0 (3.19) 

We have thus defined a line C of the rigid body under study that is 
completely defined by its point Po of position vector Po and a unit vector 
e determining its direction. Moreover, we have already defined the pitch of 
the associated motion, eq.(3.8). The line thus defined, along with the pitch, 
determines the screw of the motion under study. 

3.2.2 The Plücker Coordinates 0/ a Line 

Alternatively, the screw axis, and any line for that matter, can be defined 
more conveniently by its Plücker coordinates. In motivating this concept, 
we recall the equation of a line C passing through two points PI and P2 of 
position vectors PI and P2, as shown in Fig. 3.l. 

If point P lies in C, then, it must be collinear with PI and P2 , a property 
that is expressed as 

(P2 - PI) X (p - PI) = 0 

o 
FIGURE 3.1. A line .c passing through two points. 
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or upon expansion, 

(3.20) 

If we now introduce the cross-product matrices PI and P 2 of vectors PI 
and P2 in the above equation, we have an alternative expression for the 
equation of the line, namely, 

The above equation can be regarded as a linear equation in the homoge
neous coordinates of point P, namely, 

(3.21) 

It is now apparent that the line is defined completely by two vectors, the 
difference P2 - PI, or its cross-product matrix for that matter, and the 
cross product PI x (P2 - PI). We will thus define a 6-dimensional array , c. 
containing these two vectors, namely, 

, _ [ P2 - PI ] 
C. = PI X (P2 - PI) 

(3.22) 

whose six scalar entries are the Plücker coordinates of .c. Moreover, if we 
let 

P2 - PI 
e == IIp2 - PIII ' n == PI xe (3.23) 

then we can write 

The six scalar entries of the above array are the normalized Plücker coor
dinates of .c. Vector e determines the direction of .c, while n determines 
its location; n can be interpreted as the moment of a unit force parallel to 
e and of line of action .c. Hence, n is called the moment of .c. Henceforth, 
only the normalized Plücker coordinates of lines will be used. For brevity, 
we will refer to these simply as the Plücker coordinates of the line under 
study. The Plücker coordinates thus defined will be thus stored in a Plücker 
array Kc. in the form 

K = [:] (3.24) 

where for conciseness, we have dropped the subscript .c, while assuming 
that the li ne under discussion is self-evident. 

Note, however, that the six components of the Plücker array, i.e., the 
Plücker coordinates of line .c, are not independent, for they obey 

e· e = 1, n· e = 0 (3.25) 
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and hence, any line .c has only four independent Plücker coordinates. In the 
foregoing paragraphs, we have talked about the Plücker array of a line, and 
not ab out the Plücker vector; the reason for this distinction is given below. 
The set of Plücker arrays is a clear example of an array of real numbers 
not constituting a vector space. What disables Plücker arrays from being 
vectors are the two constraints that their components must satisfy, namely, 
(i) the sum of the squares of the first three components of a Plücker array 
is unity, and (ii) the unit vector of a line is normal to the moment of the 
line. Nevertheless, we can perform with Plücker arrays certain operations 
that pertain to vectors, as long as we keep in mi nd the essential differences. 
For example, we can multiply Plücker arrays by matrices of the suitable 
dimension, with entries having appropriate units, as we will show presently. 

It must be pointed out that a Plücker array is dependent upon the loca
tion of the point with respect to which the moment of the li ne is measured. 
Indeed, let KA and KB denote the Plücker arrays of the same line .c when 
its moment is measured at points A and B, respectively. Moreover, this 
line passes through a point P of position vector p for a particular origin 
O. Now, let the moment of.c with respect to A and B be denoted by llA 

and llB, respectively, i.e., 

llA == (p - a) x e, llB == (p - b) x e 

and hence, 

Obviously, 
llB - llA = (a - b) xe 

i.e., 

KB= [llA+(ae_b) xe] 

which can be rewritten as 

with the 6 x 6 matrix U defined as 

(3.26) 

(3.27) 

(3.28) 

(3.29) 

(3.30) 

(3.31 ) 

while A and Bare, respectively, the cross-product matrices of vectors a 
and b, and 0 denotes the 3 x 3 zero matrix. Given the lower-triangular 
structure of matrix U, its determinant is simply the product of its diagonal 
entries, which are all unity. Hence, 

det(U) = 1 (3.32) 
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U thus belonging to the uni modular group of 6 X 6 matrices. These matrices 
are rather simple to invert. In fact, as one can readily prove, 

(3.33) 

Relation (3.30) can then be called the Plücker-coordinate transfer formula. 
Note that upon multiplication of both sides of eq.(3.28) by (a - b), 

(3.34) 

and hence, the moments of the same line .c with respect to two points are 
not independent, for they have the same component along the line joining 
the two points. 

A special case of a line, of interest in kinematics, is a line at infinity. 
This is a line with undefined orientation, but with a defined direction of its 
moment; this moment is, moreover, independent of the point with respect 
to which it is measured. Very informally, the Plücker coordinates of a li ne at 
infinity can be derived from the general expression, eq.(3.24), if we rewrite 
it in the form 

K, = IInll [eilinli] 
n/llnil 

where clearly n/llnil is a unit vector; henceforth, this vector will be denoted 
by f. Now let us take the limit of the above expression as P goes to infinity, 
i.e., when Ilpll -> 00, and consequently, as IInll -> 00. Thus, 

lim K, = ( lim lInII) ( lim [eilInli]) 
IInll~oo IInll~oo Ilnll~oo f 

whence 

lim K, = ( lim lInII) [0] 
Ilnll~oo Ilnll~oo f 

The 6-dimensional array appearing in the above equation is defined as the 
Plücker array of a line at infinity, K,oo, namely, 

(3.35) 

Note that a line at infinity of unit moment f can be thought of as being 
a li ne lying in a plane perpendicular to the unit vector f, but otherwise 
with an indefinite location in the plane, except that it is an infinitely large 
distance from the origin. Thus, lines at infinity vary only in the orient at ion 
of the plane in which they lie. 
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3.2.3 The Pose of a Rigid Body 

A possible form of describing a general rigid-body motion, then, is through 
a set of eight real numbers, namely, the six Plücker coordinates of its screw 
axis, its pitch, and its amplitude, i.e., its angle. Hence, a rigid-body motion 
is fully described by six independent parameters. Moreover, the pitch can 
attain values from -00 to +00. Alternatively, a rigid-body motion can be 
described by seven dependent parameters as folIows: four invariants of the 
concomitant rotation-the linear invariants, the natural invariants, or the 
Euler-Rodrigues parameters, introduced in Section 2.3-and the three com
ponents of the displacement of an arbitrary point. Since those invariants 
are not independent, but subject to one constraint, this description consis
tently involves six independent parameters. Thus, let a particular point A 
of a rigid body undergoing a general motion from a reference configuration 
Co of rotation Q have a position vector a and a displacement dA. The pose 
array, or simply the pose, s of the body in its current configuration C, with 
respect to Co, can now be defined as a 7-dimensional array, namely, 

(3.36) 

where the 3-dimensional vector q and the scalar qo are any four invariants 
of Q. For example, if these are the Euler-Rodrigues parameters, then 

_ 4> 
qo = cos( -) 

2 

If alternatively, we work with the linear invariants, then 

q == (sin 4> )e, qo == cos 4> 

and of course, if we work instead with the natural invariants, then 

q == e, qo == 4> 

In the first two cases, the constraint mentioned above is 

In the last case, the constraint is simply 

(3.37) 

(3.38) 

An important problem in kinematics is the computation of the screw pa
rameters, i.e., the components of S, as given in eq.(3.36), from coordinate 
measurements over a certain finite set of points. From the foregoing discus
sion, it is clear that the computation of the attitude of a rigid body, given 
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by matrix Q or its invariants, is crucial in solving this problem. Moreover, 
besides its theoretical importance, this problem, known as pose estimation, 
has also practical relevance. Shown in Fig. 3.2 is the helmet-mounted dis
play system used in fiight simulators. The heImet is supplied with a set of 
LEDs (light-emitting diodes) that emit infrared light signals at different 
frequencies each. These signals are then picked up by two cameras, from 
whose images the Cartesian coordinates of the LEDs centers are inferred. 
With these coordinates and knowledge of the LED pattern, the attitude 
of the pilot's head is determined from the rotation matrix Q. Moreover, 
with this information and that provided via sensors mounted on the lenses, 
the position of the center of the pupil of the pilot's eyes is then estimated. 
This position, then, indicates on which part of his or her visual field the 
pilot's eyes are focusing. In this way, a high-resolution graphics monitor 
synthesizes the image that the pilot would be viewing with a high level of 
detail. The rest of the visual field is rendered as a rather blurred image, in 
order to allocate computer resources where it really matters. 

FIGURE 3.2. Helmet-mounted display system (courtesy of CAE Electronics Ltd., 
St.-Laurent, Quebec, Canada.) 
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FIGURE 3.3. Decomposition of the displacement of a rigid body. 

B' 

A straightforward method of computing the screw parameters consists 
of regarding the motion as folIows: Choose a certain point A of the body, 
of position vector a, and track it as the body moves to a displaced config
uration, at which point A moves to A', of position vector a'. Assurne that 
the body reaches the displaced configuration B', passing through an inter
mediate one B", which is attained by pure translation. Next, configuration 
B' is reached by rotating the body about point A', as indicated in Fig. 3.3. 

Matrix Q can now be readily determined. To do this, define three points 
of the body, PI, P2 , and P3 , in such a way that the three vectors defined 
below are orthonormal and form a right-hand system: 

-----> -----> -----> 
el == API , e2 == AP2 , e3 == AP3 

ei' ej = bij , i,j = 1,2,3, e3 = el x e2 

(3.39) 

(3.40) 

where bij is the Kronecker delta, defined as 1 if i = j and 0 otherwise. Now, 
let the set {eiH be labelled {e~H and {e~'H in configurations B' and B", 
respectively. Moreover, let qij denote the entries of the matrix representa
tion of the rotation Q in a frame X, Y, Z with origin at A and such that 
the foregoing axes are parallel to vectors el, e2, and e3, respectively. It is 
dear, from Definition 2.2.1, that 

(3.41) 

i.e., 

[
eI' e! el' e~ el' e~ 1 

[ Q 1 = e2' e l e2' e~ e2' e3 
e3 . e~ e3' e~ e3' e~ 

(3.42) 

Note that all ei and e~ appearing in eq.(3.42) must be represented in the 
same co ordinate frame. Once Q is determined, computing the remaining 
screw parameters is straightforward. One can use, for example, eq.(3.19) to 
determine the point of the screw axis that lies dosest to the origin, which 
would thus allow one to compute the Plücker coordinates of the screw axis. 
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3.3 Rotation of a Rigid Body About a Fixed 
Point 

In this section, the motion of a rigid body having a point fixed is analyzed. 
This motion is fully described by a rotation matrix Q that is proper or
thogonal. Now, Q will be assumed to be a smooth function of time, and 
hence, the position vector of a point P in an original configuration, denoted 
he re by Po, is mapped smoothly into a new vector p(t), namely, 

p(t) = Q(t)po (3.43) 

The velocity of P is computed by differentiating both sides of eq.(3.43) 
with respect to time, thus obtaining 

p(t) = Q(t)po (3.44) 

which is not a very useful expression, because it requires knowledge of the 
original position of P. A more useful expression can be derived if eq.(3.43) is 
solved for Po and the expression thus resulting is substituted into eq.(3.44), 
which yields 

(3.45) 

where the argument t has been dropped because all quantities are now 
time-varying, and hence, this argument is self-evident. The product QQT 
is known as the angular-veloeity matrix of the rigid-body motion and is 
denoted by 0, i.e., 

(3.46) 

As a consequence of the orthogonality of Q, one has a basic result, 
namely, 

Theorem 3.3.1 The angular-veloeity matrix is skew symmetrie. 

In order to derive the angular-veloeity vector of a rigid-body motion, 
we recall the concept ofaxial veetor, or simply veetor, of a 3 x 3 matrix. 
Thus, the angular-velocity vector w of the rigid-body motion under study 
is defined as the vector of 0, i.e., 

w == vect(O) (3.47) 

and hence, eq.(3.45) can be written as 

p = Op =w x p (3.48) 

from which it is apparent that the veloeity 0/ any point P 0/ a body moving 
with a point 0 fixed is perpendieular to line OP. 
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3.4 General Instantaneous Motion of a Rigid 
Body 

If a rigid body now undergoes the most general motion, none of its points 
remains fixed, and the position vector of any of these, P, in a displaced con
figuration is given by eq.(3.2). Let ao and Po denote the position vectors 
of points A and P of Section 3.2, respectively, in the reference configura
tion Co, a(t) and p(t) being the position vectors of the same points in the 
displaced configuration C. Moreover, if Q(t) denotes the rotation matrix, 
then 

p(t) = a(t) + Q(t)(po - ao) (3.49) 

Now, the velo city of Pis computed by differentiating both sides of eq.(3.49) 
with respect to time, thus obtaining 

I'>(t) = ä(t) + Q(t)(po - ao) (3.50) 

which again, as expression (3.50), is not very useful, for it requires the 
values of the position vectors of A and P in the original configuration. 
However, if eq.(3.49) is solved for Po - ao and the expression thus resulting 
is substituted into eq.(3.50), we obtain 

I'> = ä + f!(p - a) (3.51) 

or in terms of the angular-velocity vector, 

I'> = ä + w x (p - a) (3.52) 

where the argument t has been dropped for brevity but is implicit, since all 
variables of the foregoing equation are now functions of time. Furthermore, 
from eq.(3.52), it is apparent that the result below holds: 

(p - ä) . (p - a) = 0 (3.53) 

which can be summarized as 

Theorem 3.4.1 The relative velocity 0/ two points 0/ the same rigid body 
is perpendicular to the line joining them. 

Moreover, similar to the outcome of Theorem 3.2.1, one now has an ad
ditional result that is derived upon dot-multiplying both sides of eq.(3.52) 
by w, namely, 

W . I'> = W . ä = constant 

and hence, 

Corollary 3.4.1 The projections 0/ the velocities 0/ all the points 0/ a 
rigid body onto the angular-velocity vector are identical. 
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Furthermore, similar to the Mozzi-Chasles Theorem, we have now 

Theorem 3.4.2 Given a rigid body under general motion, a set of its 
points located on a line C' undergoes the identical minimum-magnitude 
velocity Va parallel to the angular velocity. 

Definition 3.4.1 The line containing the points of a rigid body undergoing 
minimum-magnitude velocities is called the instant screw axis (ISA) of the 
body under the given motion. 

3.4.1 The Instant Screw of a Rigid-Body Motion 

From Theorem 3.4.2, the instantaneous motion of a body is equivalent to 
that of the bolt of a screw ofaxis C', the ISA. Clearly, as the body moves, 
the ISA changes, and the motion of the body is called an instantaneous 
screw. Moreover, since Vo is parallel to w, it can be written in the form 

w 
Vo = Vo Ilwll (3.54) 

where Vo is a scalar quantity denoting the signed magnitude of Vo and bears 
the sign of Vo . w. Furthermore, the pitch of the instantaneous screw, p', is 
defined as 

I 27rvo 
or p =:~ (3.55) 

which thus bears units of rn/rad or correspondingly, of rn/turn. 
Again, the ISA C' can be specified uniquely through its Plücker coordi

nates, stored in the P 1:/ array defined as 

(3.56) 

where e' and n' are, respectively, the unit vector defining the direction of 
.c' and its moment ab out the origin, i.e., 

1_ W 

e = Ilwll' n' =: p x e' (3.57) 

p being the position vector of any point of the ISA. Clearly, e' is defined 
uniquely but becomes trivial when the rigid body instantaneously under
goes a pure translation, i.e., a motion during which, instantaneously, w = o. 
In this case, e' is defined as the unit vector parallel to the associated dis
placement field. Thus, an instantaneous rigid-body motion is defined by a 
line .c', a pitch p', and an amplitude Ilwll. Such a motion is, then, fully 
determined by six independent parameters, namely, the four independent 
Plücker coordinates of .c', its pitch, and its amplitude. A line supplied with 
a pitch is, in general, called a screw; a screw supplied with an amplitude 
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representing the magnitude of an angular velocity provides the represen
tation of an instantaneous rigid-body motion that is sometimes called the 
twist, an item that will be discussed more in detail below. 

Hence, the instantaneous screw is fully defined by six independent real 
numbers. Moreover, such as in the case of the screw motion, the pitch of 
the instantaneous screw can attain values from -00 to +00. 

The ISA can be alternatively described in terms of the position vector p~ 
of its point lying dosest to the origin. Expressions for p~ in terms of the po
sition and the velocity of an arbitrary body-point and the angular velo city 
are derived below. To this end, we decompose P into two orthogonal com
ponents, Pli and P.L, along and transverse to the angular-velocity vector, 
respectively. To this end, a is first decomposed into two such orthogonal 
components, all and a.L, the former being parallel, the latter normal to the 
ISA, i.e., 

a == all + a.L 
These orthogonal components are given as 

. _ (1 wwT )' _ 1 r\2· 
a.L = - IIwl12 a = -llwll2 H a 

(3.58) 

(3.59) 

In the derivation of eq.(3.59) we have used the identity introduced in 
eq.(2.39), namely, 

(3.60) 

Upon substitution of eq.(3.59) into eq.(3.52), we obtain 

. wwT . 1 r\2. r\( ) 
P = Ilw112a-llwl12H a+ HP - a (3.61) 

~' , 

Of the three components of p, the first, henceforth referred to as its axial 
component, is parallel, the last two being normal to w. The sum of the last 
two components is referred to as the normal component of p. From eq.(3.61) 
it is apparent that the axial component is independent of p, while the 
normal component is a linear function of p. An obvious question now arises: 
For an arbitrary motion, is it possible to find a certain point of position 
vector p whose velocity normal component vanishes'? The vanishing of the 
normal component obviously implies the minimization of the magnitude of 
p. The condition under which this happens can now be written as 

or 

O(p - a) - 11~112 02 a = 0 (3.62) 
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which can be furt her expressed as a vector equation linear in p, namely, 

or 

with r defined as 

Op = O(a + 11:1120ä.) 

O(p - r) = 0 

1 O. 

r == a+ IIwl12ua 
and hence, a possible solution of the foregoing problem is 

1 O. 

P = r = a+ IIwl12ua 

(3.63) 

(3.64a) 

(3.64b) 

(3.65) 

However, this solution is not unique, for eq.(3.64a) does not require that 
p-r be zero, only that this difference lie in the nulls pace of 0, i.e., that p-r 
be linearly dependent with w. In other words, if a vector aw is added to p, 
then the sum also satisfies eq.(3.63). It is then apparent that eq.(3.63) does 
not determine a single point whose normal velo city component vanishes 
but a set of points lying on the ISA, and thus, other solutions are possible. 
For example, we can find the point of the ISA lying closest to the origin. To 
this end, let p~ be the position vector of that point. This vector is obviously 
perpendicular to w, i.e., 

wT p~ = 0 (3.66) 

Next, eq.(3.63) is rewritten for p~, and eq.(3.66) is adjoined to it, thereby 
deriving an expanded linear system of equations, namely, 

Ap~ =b (3.67) 

where A is a 4 x 3 matrix and b is a 4-dimensional vector, both of which 
are given below: 

(3.68) 

This system is of the same nature as that appearing in eq. (3.11), and hence, 
it can be solved far p~ following the same procedure. Thus, both sides of 
eq. (3.67) are multiplied from the left by AT, thereby obtaining 

(3.69) 

where 
(3.70) 

Moreover, from eq.(3.60), the rightmost side of the foregoing relation be
comes Ilw1121, and hence, the matrix coefficient of the left-hand side of 



www.manaraa.com

88 3. Fundamentals of Rigid-Body Mechanics 

eq.(3.69) and the right-hand side of the same equation reduce, respectively, 
to 

(3.71) 

Upon substitution of eq.(3.71) into eq.(3.69) and furt her solving for P~, the 
desired expression is derived: 

I O(ä. - Oa) _ w x (ä. - w x a) 
Po = IIwl12 = IIwll2 (3.72) 

Thus, the instantaneous screw is fully defined by an alternative set of six 
independent scalars, namely, the three components of its angular velocity 
wand the three components of the velo city of an arbitrary body point A, 
denoted by ä.. As in the case of the screw motion, we can also represent the 
instantaneous screw by a li ne and two additional parameters, as we explain 
below. 

3.4.2 The Twist of a Rigid Body 

A line, as we saw earlier, is fully defined by its 6-dimensional Plücker array, 
which contains only four independent components. Now, if a pitch p is 
added as a fifth feature to the line or correspondingly, to its Plücker array, 
we obtain a screw s, namely, 

S= [px:+pe] (3.73) 

An amplitude is any scalar A multiplying the foregoing screw. The am
plitude pro duces a twist or a wrench, to be discussed presently, depending 
On its units. The twist or the wrench thus defined can be regarded as an 
eight-parameter array. These eight parameters, of which only six are in
dependent, are the amplitude, the pitch, and the six Plücker coordinates 
of the associated line. Clearly, a twist or a wrench is defined completely 
by six independent real numbers. More generally, a twist can be regarded 
as a 6-dimensional array defining completely the velo city field of a rigid 
body, and it comprises the three components of the angular velocity and 
the three components of the velocity of any of the points of the body. 

Below we elaborate on the foregoing concepts. Upon multiplication of 
the screw appearing in eq.(3.73) by the amplitude A representing the 
magnitude of an angular velocity, we obtain a twist t, namely, 

t = [ Ae ] 
- P x (Ae) + p(Ae) 

where the product Ae can be readily identified as the angular velocity w 
parallel to vector e, of magnitude A. Moreover, the lower part of t can be 
readily identified with the velocity of a point of a rigid body. Indeed, if we 
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regard the li ne Land point 0 as sets of points of a rigid body B moving 
with an angular velocity wand such that point P moves with a velocity 
pw parallel to the angular velocity, then the lower vector of t, denoted by 
v, represents the velo city of point 0, Le., 

v = -w x p+pw 

We can thus express the twist t as 

(3.74) 

A special case of great interest in kinematics is the screw of infinitely 
large pitch. The form of this screw is derived, very informally, by taking 
the limit of expression (3.73) as p ---+ 00, namely, 

lim [ e ] = lim (p [ e / p ] ) 
p_oo p x e+pe - p-oo (p x e)/p+e 

which readily leads to 

p~~ [p x : + pe] = C~~ p) [~] 
The screw 01 infinite pitch Soo is defined as the 6-dimensional array appear
ing in the above equation, namely, 

(3.75) 

Note that this screw array is identical to the Plücker array of the line at 
infinity lying in a plane of unit normal e. 

The twist array, as defined in eq.(3.74), with w on top, represents the 
ray coordinates of the twist. An exchange of the order of the two Cartesian 
vectors of this array, in turn, gives rise to the axis coordinates of the twist. 

The foregoing twist was also termed motor by Everett (1875). As Phillips 
(1990) points out, the word motor is an abbreviation of moment and vector. 
An extensive introduction into motor algebra was published by von Mises 
(1924), a work that is now available in English (von Mises, 1996). Roth 
(1984), in turn, provided a summary of these concepts, as applicable to 
robotics. The foregoing array goes also by other names, such as the German 
Kinemate. 

The relationships between the angular-velocity vector and the time de
rivatives of the invariants of the associated rotation are linear. Indeed, let 
the three sets of four invariants of rotation, namely, the natural invariants, 
the linear invariants, and the Euler-Rodrigues parameters be grouped in 
the 4-dimensional arrays v, A, and 'T1, respectively, i.e., 

A == [(Sin4»e] 
cos 4> ' 

= [[Sin(4)/2)]e] 
'T1- cos(4)/2) (3.76) 
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We then have the linear relations derived in fuH detail elsewhere (Angeles, 
1988), and outlined in Appendix A for quick reference, namely, 

v = Nw, >. = Lw, i] = Hw 

with N, L, and H defined as 

N = [[sincP/(2(1- cOSc/»l~l- eeT ) - (1/2)E] , 

L = [(1/2)[tr(Q)1 - Q]] 
- -(sinc/»eT , 

H = ~ [COS(c/>/2)1- Sin(cP/2)E] 
- 2 - sin(c/>/2)eT 

(3.77a) 

(3.77b) 

(3.77c) 

(3.77d) 

where, it is recaHed, tr(·) denotes the trace of its square matrix argument 
(.), i.e., the sum of the diagonal entries of that matrix. 

The inverse relations of those shown in eqs.(3.77a) are to be derived by 
resorting to the approach introduced when solving eq.(3.67) for p~, thereby 
obtaining 

........ --- . --
w = Nv = LA = Hi] (3.78a) 

the 3 x 4 matrices N, L, and H being defined below: 

N=[(sinc/»l+(l-cosc/»E e], (3.78b) 

L = [1 + [(sin c/»/(1 + cos c/»]E -[(sin c/»/(1 + cos c/»]e], (3.78c) 

H = 2 [[cos(cf>/2)Jl + [sin(cP/2)JE -[sin(c/>/2)JeJ (3.78d) 

As a consequence, we have the following: 

Caveat The angular velocity vector is not a time-derivative, i.e., no Carte
sian vector exists whose time-derivative is the angular-velocity vector. 

However, matrices N, L, and H of eqs.(3.77b--d) can be regarded as 
integration factors that yield time-derivatives. 

Now we can write the relationship between the twist and the time-rate 
of change of the 7-dimensional pose array s, namely, 

s = Tt (3.79) 

where 

(3.80) 

in which 0 and 0 43 are the 3 x 3 and the 4 x 3 zero matrices, while 
1 is the 3 x 3 identity matrix and Fis, correspondingly, N, L, or H, 
depending upon the invariant representation chosen for the rotation. The 
inverse relations hip of eq.(3.79) takes the form 

t = Ss (3.81a) 
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where 

s = [F 0] - 0 34 1 (3.81b) 

in which 0 34 is the 3 x 4 zero matrix. Moreover, F is one of N, L, or 
H, depending on the rotation representation adopted, namely, the nat
ural invariants, the linear invariants, or the Euler-Rodrigues parameters, 
respectively. 

A formula that relates the twist of the same rigid body at two different 
points is now derived. Let A and P be two arbitrary points of a rigid body. 
The twist at each of these points is defined as 

tp = [ w ] 
Vp 

(3.82) 

Moreover, eq.(3.52) can be rewritten as 

Vp=VA+(a-p)xw (3.83) 

Combining eq.(3.82) with eq.(3.83) yields 

(3.84) 

where 

u= [A~P ~] (3.85) 

with the 6 x 6 matrix U defined as in eq.(3.31), while A and P denote the 
cross-product matrices of vectors a and p, respectively. Thus, eq.(3.84) can 
be fairly called the twist-transfer formula. 

3.5 Acceleration Analysis of Rigid-Body Motions 

Upon differentiation of both sides of eq.(3.51) with respect to time, one 
obtains 

p = ä + O(p - a) + !1(p - ä) (3.86) 

Now, eq.(3.51) is solved for p - ä, and the expression thus resulting is 
substituted into eq. (3.86), thereby obtaining 

(3.87) 

where the matrix sum in parentheses is termed the angular-acceleration 
matrix of the rigid-body motion and is represented by W, i.e., 

(3.88) 
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Clearly, the first term of the right-hand side of eq.(3.88) is skew-symmetric, 
whereas the second one is symmetrie. Thus, 

vect(W) = vect(fl) = w (3.89) 

w being termed the angular-acceleration vector of the rigid-body motion. 
We have now an interesting result, namely, 

tr(W) = tr(02) = tr( -llw1121 + wwT ) 

= -llwI1 2tr(1) + w· w = -211w11 2 

Moreover, eq.(3.87) can be written as 

p = ä + w x (p - a) + w x [w x (p - a)] 

(3.90) 

(3.91) 

On the other hand, the time derivative of t, henceforth referred to as the 
twist rate, is displayed below: 

t=: [ wv·· ] (3.92) 

in which v is the acceleration of a point of the body. The relationship 
between the twist rate and the second time derivative of the screw is derived 
by differentiation of both sides of eq.(3.79), which yields 

(3.93) 

where 

T =: [~ 0~3] (3.94) 

and F is one ofN, L, or H, accordingly. The inverse relationship of eq.(3.93) 
is derived by differentiating both sides of eq.(3.81a) with respect to time, 
whieh yields 

t = Ss + Ss (3.95) 

where . [F g] (3.96) S-
0 34 

with 0 and 0 34 already defined in eq.(3.81b) as the 3 x 3 and the 3 x 4 
...:.... ...:....,..:.......:... .. 

zero matriees, respectively, while F is one of N, L, or H, according with 
the type of rotation representation at hand. 

Before we take to differentiating the foregoing matrices, we introduce a 
few definitions: Let 

(3.97a) 



www.manaraa.com

3.6 Rigid-Body Motion Referred to Moving Coordinate Axes 93 

i.e., 

u == sin <jJe, Uo == cos <jJ, r == sin( cf!. )e, 
2 

Thus, the time derivatives sought take on the forms 

N = 4(1-1cos 4J) [!] 
. _ [ (1/2)[ltr(Q) - Q] ] 
L - -(1/2)wT [ltr(Q) _ QT] 

[ -(w· u)l - (1/2)nQ ] 
= -(1/2)wT[ltr(Q) - QT] 

. _ 1 [fol- R] H- - 'T 2 -r 

(3.97b) 

(3.98a) 

(3.98b) 

(3.98c) 

where we have used the identities below, which are derived in Appendix A. 

tr(Q) == tr(nQ) == -2wT u (3.98d) 

Furthermore, R denotes the cross-product matrix of r, and B is defined as 

B == -2(e· w)l + 2(3 - cos<jJ)(e· w)eeT - 2(1 + sin<jJ)weT 

-(2cos<jJ + sin4J)ewT - (sin<jJ)[n - (e· w)E] (3.98e) 

Moreover, 

(3.99a) 

L=[V/D ü] (3.99b) 

(3.99c) 

where U denotes the cross-product matrix of u, while V and D are defined 
below: 

V U· (' T . T) Uo (U T) == - uu + uu - - - uu 
D 

D==1+uo 

3.6 Rigid-Body Motion Referred to Moving 
Coordinate Axes 

(3.99d) 

(3.9ge) 

Although in kinematics no "preferred" coordinate system exists, in dynam
ics the governing equations of rigid-body motions are valid only in inertial 
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frames. An inertial frame can be defined as a co ordinate system that trans
lates with uniform velo city and constant orientation with respect to the 
stars. Thus, it is important to refer vectors and matrices to inertial frames, 
but sometimes it is not possible to do so directly. For instance, a spacecraft 
can be supplied with instruments to measure the velocity and the acceler
ation of a satellite drifting in space, but the measurements taken from the 
spacecraft will be referred to a co ordinate frame fixed to it, which is not in
ertial. If the motion of the spacecraft with respect to an inertial coordinate 
frame is recorded, e.g., from an Earth-based station, then the acceleration 
of the satellite with respect to an inertial frame can be computed using the 
foregoing information. How to do this is the subject of this section. In the 
realm of kinematics, it is not necessary to distinguish between inertial and 
noninertial coordinate frames, and hence, it will suffice to call the coordi
nate systems involved fixed and moving. Thus, consider the fixed co ordinate 
frame X, Y, Z, which will be labeled F, and the moving co ordinate frame 
X, y, and Z, which will be labeled M, both being depicted in Fig. 3.4. 
Moreover, let Q be the rotation matrix taking frame F into the orientation 
of M, and 0 the position vector of the origin of M from the origin of F. 
Further, let p be the position vector of point P from the origin of Fand P 
the position vector of the same point from the origin of M. From Fig. 3.4 
one has 

[p ]F = [O]F + [p ]F (3.100) 

where it will be assumed that P is not available in frame F, but in M. 
Hence, 

[p]F = [Q]F[p]M 

Substitution of eq.(3.101) into eq.(3.100) yields 

[p]F = [O]F + [Q]F[p]M 

(3.101) 

(3.102) 

Now, in order to compute the velocity of P, both sides of eq.(3.102) are 
differentiated with respect to time, which leads to 

[P]F = [Ö]F+ [Q]F[p]M + [Q]F[p]M (3.103) 

Furthermore, from the definition of 0, eq.(3.46), we have 

[Q]F = [O]F[Q]F (3.104) 

Upon substitution of the foregoing relation into eq.(3.103), we obtain 

[p]F = [Ö]F+ [O]F[Q]F[p]M + [Q]F[p]M (3.105) 

which is an expression for the velocity of P in F in terms of the velocity of 
P in M and the twist of M with respect to F. Next, the acceleration of 
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y 

x y 

FIGURE 3.4. Fixed and moving coordinate frarnes. 

P in:F is derived by differentiation of both sides of eq.(3.105) with respect 
to time, which yields 

[P]F = [Ö]F+ [O]F[Q]F[p]M + [11]F[Q]F[p]M 
+[11]F[Q]F[p]M + [Q]F[p]M + [Q]F[p]M (3.106) 

Further, upon substitution of identity (3.104) into eq.(3.106), we obtain 

[P]F = [Ö]F + ([O]F + [11 2 ]F )[Q]F[P]M 
+2[11]F[Q]F[P]M + [Q]F[p]M (3.107) 

Moreover, from the results of Section 3.5, it is clear that the first two 
terms of the right-hand side of eq.(3.107) represent the acceleration of P as 
a point of M, whereas the fourth term is the acceleration of P measured 
from M. The third term is what is called the Coriolis acceleration, as it was 
first pointed out by the French mathematician Gustave Gaspard Coriolis 
(1835). 

3.7 Static Analysis of Rigid Bodies 

Germane to the velo city analysis of rigid bodies is their force-and-moment 
analysis. In fact, striking similarities exist between the velocity relations 
associated with rigid bodies and the forces and moments acting on them. 
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p p 

f 

(a) (b) 

FIGURE 3.5. Equivalent systems of force and moment acting on a rigid body. 

From elementary statics it is known that the resultant of all external ac
tions, Le., forces and moments, exerted on a rigid body can be reduced to 
a force f acting at a point, say A, and a moment nA. Alternatively, the 
aforementioned force f can be defined as acting at an arbitrary point P 
of the body, as depicted in Fig. 3.5, but then the resultant moment, np, 
changes correspondingly. 

In order to establish a relationship between nA and np, the moment of 
the first system of force and moment with respect to point P is equated to 
the moment ab out the same point of the second system, thus obtaining 

np=nA+(a-p)xf (3.108) 

which can be rewritten as 

np = nA + f x (p - a) (3.109) 

whence the analogy with eq.(3.52) is apparent. Indeed, np and nA of 
eq.(3.109) play the role of the velocities of P and A, p and ä, respec
tively, whereas f of eq.(3.109) plays the role of W of eq.(3.52). Thus, similar 
to Theorem 3.4.2, one has 

Theorem 3.7.1 For a given system of forces and moments acting on a 
rigid body, if the resultant force is applied at any point of a particular line 
1:,", then the resultant moment is of minimum magnitude. Moreover, that 
minimum-magnitude moment is parallel to the resultant force. 

Hence, the resultant of the system of forces and moments is equivalent to 
a force f acting at a point of 1:," and a moment n, with both fand n parallel 
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to .e". Paraphrasing the definition of the ISA, one defines line .e" as the 
axis of the wrench acting on the body. Let no be the minimum-magnitude 
moment. Clearly, no can be expressed as Vo was in eq.(3.54), namely, as 

f 
no =nom' 

np·f 
no == lIff 

Moreover, the pitch of the wrench, p", is defined as 

,,_ no 
p =m np·f 

IIfl1 2 

" 27rnp·f 
or p = IIfl1 2 

(3.110) 

(3.111) 

which again has units of rn/rad or correspondingly, of rn/turn. Of course, 
the wrench axis can be defined by its Plücker array, P.e", Le., 

[ e"] P.e" == n" , 
" f 

e =m' n" = P x e" (3.112) 

where e" is the unit vector parallel to .e", n" is the moment of .e" ab out 
the origin, and P is the position vector of any point on .e". 

The wrench axis is fully specified, then, by the direction of fand point 
p~' lying dosest to the origin of position vector p~, which can be derived 
by analogy with eq.(3.72), namely, as 

" 1 ( ) Po = IIfl1 2 f x nA - f x a (3.113) 

Similar to Theorem 3.4.1, one has 

Theorem 3.7.2 The projection of the resultant moment of a system of 
moments and forces acting on a rigid body that arises when the resultant 
force is applied at an arbitrary point of the body onto the wrench axis is 
constant. 

Prom the foregoing discussion, then, the wrench applied to a rigid body 
can be fully specified by the resultant force f acting at an arbitrary point P 
and the associated moment, np. We shall derive presently the counterpart 
of the 6-dimensional array of the twist, namely, the wrench array. Upon 
multiplication of the screw of eq.(3.73) by an amplitude A with units of 
force, what we will obtain would be a wrench w, i.e., a 6-dimensional array 
with its first three components having units of force and its last components 
units of moment. We would like to be able to obtain the power developed 
by the wrench on the body moving with the twist t by a simple inner 
product of the two arrays. However, because of the form the wrench W 

has taken, the inner product of these two arrays would be meaningless, 
for it would involve the sum of two scalar quantities with different units, 
and moreover, each of the two quantities is without an immediate physical 
meaning. In fact, the first scalar would have units of force by frequency 
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(angular velo city by force), while the second would have units of moment 
of moment multiplied by frequency (velocity by moment), thereby leading 
to a physically meaningless result. This inconsistency can be resolved if we 
redefine the wrench not simply as the product of a screw by an amplitude, 
but as a linear transformation of that screw involving the 6 x 6 array r 
defined as 

(3.114) 

where 0 and 1 denote, respectively, the 3 x 3 zero and identity matrices. 
Now we define the wrench as a linear transformation of the screw s defined 
in eq.(3.73). This transformation is obtained upon multiplying s by the 
product Ar, the amplitude A having units of force, i.e., 

= Ar = [p x (Ae) + p(Ae)] 
w - s - Ae 

The foregoing wrench is said to be given in axis coordinates, as opposed to 
the twist, which was given in ray coordinates. 

Now, the first three components of the foregoing array can be readily 
identified as the moment of a force of magnitude A acting along a line of 
action given by the Plücker array of eq.(3.112), with respect to a point P, 
to which a moment parallel to that line and of magnitude pA is added. 
Moreover, the last three components of that array pertain apparently to 
a force of magnitude A and parallel to the same line. We denote here the 
above-mentioned moment by n and the force by f, Le., 

f == Ae, n == P x f + pf 

The wrench w is then defined as 

(3.115) 

which can thus be interpreted as a representation of a system of forces and 
moments acting on a rigid body, with the force acting at point P of the 
body B defined above and a moment n. Under these circumstances, we say 
that w acts at point P of B. 

With the foregoing definitions it is now apparent that the wrench has 
been defined so that the inner product t T w will produce the power II 
developed by w acting at P when B moves with a twist t defined at the 
same point, i.e., 

(3.116) 

When a wrench w that acts on a rigid body moving with the twist t 
develops zero power onto the body, we say that the wrench and the twist 
are reciprocal to each other. By the same token, the screws associated with 
that wrench-twist pair are said to be reciprocal. More specifically, let the 
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wrench and the twist be given in terms of their respective screws, Sw and 
St, as 

(3.117) 

where Wand T are the amplitudes ofthe wrench and the twist, respectively, 
while r is as defined in eq.(3.114). Thus, the two screws Sw and St are 
reciprocal if 

(3.118) 

and by virtue of the symmetry of r, the foregoing relation can be furt her 
expressed as 

(3.119) 

Now, if A and P are arbitrary points of a rigid body, we define the wrench 
at these points as 

_ [nA] _ [np] 
WA = f ' Wp = f (3.120) 

Therefore, eq.(3.108) leads to 

Wp =YwA (3.121) 

where 

y=[1 A-P] 
- 0 1 (3.122) 

and A and P were defined in eq.(3.85) as the cross-product matrices of 
vectors a and p, respectively. Thus, Wp is a linear transformation of W A. 

By analogy with the twist-transfer formula of eq.(3.84), eq.(3.121) is termed 
he re the wrench-tmnsfer formula. 

Multiplying the transpose of eq.(3.84) by eq.(3.121) yields 

T TUTy tpwp = t A WA (3.123) 

where 

UTy = [01 -A + P] [1 A -P] = 1 1 0 1 6x6 (3.124) 

with 16x6 denoting the 6 x 6 identity matrix. Thus, tJ,wp = t~wA, as 
expected, since the wrench develops the same amount of power, regardless 
of where the force is assumed to be applied. Also note that an interesting 
relation between U and Y follows from eq.(3.124), namely, 

V-I = uT (3.125) 



www.manaraa.com

100 3. Fundamentals of Rigid-Body Mechanics 

3.8 Dynamics of Rigid Bodies 

The equations governing the motion of rigid bodies are recalled in this 
section and cast into a form suitable to multibody dynamics. To this end, 
a few definitions are introduced. If a rigid body has a mass density p, whieh 
need not be constant, then its mass m is defined as 

m= hPdB (3.126) 

where B denotes the region of the 3-dimensional space occupied by the 
body. Now, if p denotes the position vector of an arbitrary point of the 
body, from a previously defined origin 0, the mass first moment of the 
body with respect to 0, qo, is defined as 

qo == h PPdB (3.127) 

Furthermore, the mass second moment of the body with respect to 0 is 
defined as 

(3.128) 

which is clearly a symmetrie matrix. This matrix is also called the moment
of-inertia matrix ofthe body under study with respect to O. One can readily 
prove the following result: 

Theorem 3.8.1 The moment 0/ inertia 0/ a rigid body with respect to a 
point 0 is positive definite. 

Proo/: All we need to prove is that for any vector w, the quadratic form 
wT10w is positive. But this is so, because 

(3.129) 

Now, we recall that 
p. w = IIpllllwll cos(p, w) (3.130) 

in which (p, w) stands for the angle between the two vectors within the 
parentheses. Substitution of eq.(3.130) into eq.(3.131) leads to 

wTlow = h pllpI121I w I1 2[1- cos2(p, w) ]dB 

= hPllpI12I1wIl2sin2(p,w)dB 

which is a positive quantity that vanishes only in the ideal case of asIender 
body having all its mass concentrated along a line passing through 0 and 
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parallel to w, which would thus render sin(p, w) = 0 within the body, 
thereby completing the proof. 

Alternatively, one can prove the positive definiteness of the mass moment 
of inertia based on physical arguments. Indeed, if vector w of the previous 
discussion is the angular velo city of the rigid body, then the quadratic form 
of eq.(3.129) turns out to be twice the kinetic energy of the body. Indeed, 
the said kinetic energy, denoted by T, is defined as 

where p is the velocity of any point P of the body. For the purposes of this 
discussion, it will be assumed that point 0, about which the second moment 
is defined, is a point of the body that is instantaneously at rest. Thus, if 
this point is defined as the origin of the Euclidean space, the velo city of 
any point of the body, moving with an angular velocity w, is given by 

p=wxp 

which can be rewritten as 
p = -Pw 

with P defined as the cross-product matrix of p. Hence, 

Moreover, by virtue of eq.(2.39), the foregoing expression is readily re
ducible to 

(3.131) 

Therefore, the kinetic energy reduces to , 

(3.132) 

and since the angular velo city is constant throughout the body, it can be 
taken out of the integral sign, Le., 

(3.133) 

The term inside the brackets of the latter equation is readily identified as 
10 , and hence, the kinetic energy can be written as 

1 T 
T = 2w low (3.134) 

Now, since the kinetic energy is a positive-definite quantity, the quadratic 
form of eq.(3.134) is consequently positive-definite as weIl, thereby proving 
the positive-definiteness of the second moment. 
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The mass center of a rigid body, measured from 0, is defined as a point 
C, not necessarily within the body-think of a homogeneous torus-of 
position vector c given by 

qo 
c == - (3.135) 

m 
Naturally, the mass moment of inertia of the body with respect to its 
centroid is defined as 

where r is defined, in turn, as 

r==p-c (3.137) 

Obviously, the mass moment of inertia of a rigid body about its mass cen
ter, also termed its centroidal mass moment of inertia, is positive-definite 
as well. In fact, the mass-or the volume, for that matter-moment of 
inertia of a rigid body with respect to any point is positive-definite. As a 
consequence, its three eigenvalues are positive and are referred to as the 
principal moments of inertia of the body. The eigenvectors of the inertia 
matrix are furthermore mutually orthogonal and define the principal axes 
of inertia of the body. These axes are parallel to the eigenvectors of that 
matrix and pass through the point about which the moment of inertia is 
taken. Note, however, that the principal moments and the principal axes 
of inertia of a rigid body depend on the point with respect to which the 
moment of inertia is defined. Moreover, let 10 and le be defined as in 
eqs.(3.128) and (3.136), with r defined as in eq.(3.137). It is possible to 
show that 

(3.138) 

Furt hermore , the smallest principal moment of inertia of a rigid body at
tains its minimum value at the mass center of the body. The relationship 
appearing in eq.(3.138) constitutes the Theorem of Parallel Axes. 

Henceforth, we assurne that c is the position vector of the mass center in 
an inertial frame. Now, we recall the Newton-Euler equations governing the 
motion of a rigid body. Let the body at hand be acted upon by a wrench of 
force f applied at its mass center, and a moment ne. The Newton equation 
then takes the form 

f=mc (3.139a) 

whereas the Euler equation is 

ne = lew + w x lew (3.139b) 

The momentum m and the angular momentum he of a rigid body moving 
with an angular velocity ware defined below, the angular momentum being 
defined with respect to the mass center. These are 

m == mc, he == lew (3.140) 
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Moreover, the time-derivatives of the foregoing quantities are readily com
puted as 

m = mc, h e = lew + w x lew 

and hence, eqs.(3.139a & b) take on the forms 

f= m, Oe = he 

(3.141) 

(3.142) 

The set of equations (3.139a) and (3.139b) are known as the Newton-Euler 
equations. These can be written in a more compact form as we describe 
below. First, we introduce a 6 x 6 matrix M that following von Mises 
(1924), we term the inertia dyad, namely, 

(3.143) 

where 0 and 1 denote the 3 x 3 zero and identity matrices. A similar 
6 x 6 matrix was defined by von Mises und er the above name. However, 
von Mises's inertia dyad is full, while the matrix defined above is block
diagonal. Both matrices, nevertheless, denote the same physical property 
of a rigid body, i.e., its mass and moment of inertia. Now the Newton-Euler 
equations can be written as 

Mt+WMt=w (3.144) 

in which matrix W, which we shall term, by similarity with the inertia 
dyad, the angular-velocity dyad, is defined, in turn, as 

(3.145) 

with n already defined as the angular-velo city matrix; it is, of course, the 
cross-product matrix of the angular-velocity vector w. Note that the twist 
of a rigid body lies in the nullspace of its angular-velocity dyad, i.e., 

Wt=O (3.146) 

Further definitions are introduced below: The momentum screw of the 
rigid body about the mass center is the 6-dimensional vector J.L defined as 

(3.147) 

Furthermore, from eqs.(3.141) and definition (3.147), the time-derivative 
of J.L can be readily derived as 

jJ, = Mt + W J.L = Mt + WMt (3.148) 
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The kinetic energy of a rigid body undergoing a motion in which its mass 
center moves with velo city c and rotates with an angular velocity w is given 
by 

(3.149) 

From the foregoing definitions, then, the kinetic energy can be written in 
compact form as 

(3.150) 

Finally, the Newton-Euler equations can be written in an even more com
pact form as 

p,=w 
which is a 6-dimensional vector equation. 

(3.151) 
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Kinetostatics of Simple Robotic 
Manipulators 

4.1 Introduction 

This chapter is devoted to the kinetostatics of robotic manipulators of the 
serial type, i.e., to the kinematics and statics of these systems. The study is 
general, but with regard to what is called the inverse kinematics problem, 
we limit the chapter to decoupled manipulators, to be defined below. The 
inverse displacement analysis of general six-axis manipulators is addressed 
in Chapter 8. 

More specifically, we will define aserial, n-axis manipulator. In connec
tion with this manipulator, additionally, we will (i) introduce the Denavit
Hartenberg notation for the definition of link frames that uniquely deter
mine the architecture and the configuration, or posture, of the manipulator 
at hand; (ii) define the Cartesian and joint coordinates of this manipulator; 
and (iii) introduce its Jacobian matrix. 

Moreover, with regard to six-axis manipulators, we will (i) define decou
pled manipulators and provide a procedure for the solution of their displace
ment inverse kinematics; (ii) formulate and solve the velocity-resolution 
problem, give simplified solutions for decoupled manipulators, and iden
tify their singularities; (iii) define the workspace of a three-axis positioning 
manipulator and provide means to display it; (iv) formulate and solve the 
acceleration-resolution problem and give simplified solutions for decoupled 
manipulators; and (v) analyze manipulators statically, while giving simpli
fied analyses for decoupled manipulators. While doing this, we will devote 
special attention to plan ar manipulators. 
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4.2 The Denavit-Hartenberg Notation 

One of the first tasks of a robotics engineer is the kinematic modeling of 
a robotic manipulator. This task consists of devising a model that can be 
unambiguously (i) described to a control unit through a database and (ii) 
interpreted by other robotics engineers. The purpose of this task is to give 
manipulating instructions to a robot, regardless of the dynamics of the 
manipulated load and the robot itself. The simplest way of kinematically 
modeling a robotic manipulator is by means of the concept of kinematic 
chain. A kinematic chain is a set of rigid bodies, also called links, coupled by 
kinematic pairs. A kinematic pair is, then, the coupling of two rigid bodies 
so as to constrain their relative motion. We distinguish two basic types of 
kinematic pairs, namely, upper and lower kinematic pairs. An upper kine
matic pair arises between rigid bodies when contact takes place along a 
line or at a point. This type of coupling occurs in cam-and-follower mecha
nisms, gear trains, and roller bearings, for example. A lower kinematic pair 
occurs when contact takes place along a surface common to the two bodies. 
Six different types of lower kinematic pairs can be distinguished (Denavit 
and Hartenberg, 1964; Angeles, 1982), but all these can be produced from 
two basic types, namely, the rotating pair, denoted by Rand also called 
revolute, and the sliding pair, represented by P and also called prismatic. 

The common surface along which contact takes place in arevolute pair is 
a circular cylinder, a typical example of this pair being the coupling through 
journal bearings. Thus, two rigid bodies coupled by arevolute can rotate 
relative to each other about the axis of the common cylinder, which is thus 
referred to as the axis of the revolute, but are prevented from undergoing 
relative translations as well as rotations about axes other than the cylinder 
axis. On the other hand, the common surface of contact between two rigid 
bodies coupled by a prismatic pair is a prism of arbitrary cross section, and 
hence, the two bodies coupled in this way are prevented from undergoing 
any relative rotation and can move only in a pure-translation motion along 
a direction parallel to the axis of the prism. As an example of this kinematic 
pair, one can cite the dovetail coupling. Note that whereas the revolute axis 
is a totally defined line in three-dimensional space, the prismatic pair has 
no defined axis; this pair has only a direction. That is, the prismatic pair 
does not have a particular location in space. Bodies coupled by arevolute 
and a prismatic pair are shown in Fig. 4.l. 

Serial manipulators will be considered in this chapter, their associated 
kinematic chains thus being of the simple type, i.e., each and every link 
is coupled to at most two other links. A simple kinematic chain can be 
either closed or open. It is closed if each and every link is coupled to two 
other links, the chain then being called a linkage; it is open if it contains 
exactly two links, the end ones, that are coupled to only one other link. 
Thus, simple kinematic chains studied in this chapter are open, and in the 
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FIGURE 4.1. Revolute and prismatic pair. 

particular robotics terminology, their first link is called the manipulator 
base, whereas their last link is termed the end-effector (EE). 

Thus, the kinematic chains associated with manipulators of the serial 
type are composed of binary links, the intermediate ones, and exactly two 
simple links, those at the ends. Hence, except for the end links, all links 
carry two kinematic pairs, and as a consequence, two pair axes-however, 
notice that a prismatic pair has a direction but no axis. In order to uniquely 
describe the architecture of a kinematic chain, Le., the relative location and 
orientation of its neighboring pair axes, the Denavit-Hartenberg nomen
clature (Denavit and Hartenberg, 1955) is introduced. To this end, links 
are numbered 0, 1, ... , n, the ith pair being defined as that coupling the 
(i - 1)st link with the ith link. Hence, the manipulator is assumed to be 
composed of n + 1 links and n pairs; each of the latter can be either R or P, 
where link 0 is the fixed base, while link n is the end-effector. Next, a coor
dinate frame Fi is defined with origin Gi and axes Xi, Yi, Zi. This frame 
is attached to the (i -1)st link-not to the ith link!-for i = 1, ... , n + 1. 
For the first n frames, this is done following the rules given below: 

1. Zi is the axis of the ith pair. Notice that there are two possibilities of 
defining the positive direction of this axis, since each pair axis is only 
a line, not a directed segment. Moreover, the Zi axis of a prismatic 
pair can be located arbitrarily, since only its direction is defined by 
the axis of this pair. 

2. Xi is defined as the common perpendicular to Zi-l and Zi, directed 
from the former to the latter, as shown in Fig. 4.2a. Notice that if 
these two axes intersect, the positive direction of Xi is undefined and 
hence, can be freely assigned. Henceforth, we will follow the right
hand rule in this case. This means that if unit vectors ii, k i - 1 , and 
k i are attached to axes Xi, Zi-l, and Zi, respectively, as indicated in 
Fig. 4.2b, then ii is defined as k i - 1 x k i . Moreover, if Zi-l and Zi are 
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FIGURE 4.2. Definition of Xi when Zi-l and Zi: (a) are skewj (b) intersectj and 
( c) are parallel. 

parallel, the location of Xi is undefined. In order to define it uniquely, 
we will specify Xi as passing through the origin of the (i -l)st frame, 
as shown in Fig. 4.2c. 

3. The distance between Zi and Zi+l is defined as ai, which is thus 
nonnegative. 

4. The Zi-coordinate of the intersection O~ of Zi with Xi+l is denoted 
by bio Note that this quantity is a coordinate and hence, can be 
either positive or negative. Its absolute value is the distance be
tween Xi and Xi+l, also called the offset between successive common 
perpendiculars. 

5. The angle between Zi and Zi+l is defined as (}i and is measured about 
the positive direction of Xi+l. This item is known as the twist angle 
between successive pair axes. 

6. The angle between Xi and Xi+l is defined as Oi and is measured 
about the positive direction of Zi' 

The (n + 1 )st coordinate frame is attached to the far end of the nth link. 
Since the manipulator has no (n+l)st link, the foregoing rules do not apply 
to the definition of the last frame. The analyst, thus, has the freedom to 
define this frame as it best suits the task at hand. Notice that n+ 1 frames, 
Tl, T2, ... , T n +l , have been defined, whereas links are numbered from 0 
to n. In summary, an n-axis manipulator is composed of n + 1 links and 
n+ 1 co ordinate frames. These rules are illustrated with an example below. 

Consider the architecture depicted in Fig. 4.3, usually referred to as a 
Puma robot, which shows seven links, numbered from 0 to 6, and seven 
co ordinate frames, numbered from 1 to 7. Note that the last frame is arbi
trarily defined, but its origin is placed at a specific point of the EE, namely, 
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FIGURE 4.3. Coordinate frames of a Puma robot. 

at the operation point, P, whieh is used to define the task at hand. Fur
thermore, three axes interseet at a point C, and henee, all points of the 
last three links move on eoneentrie spheres with respeet to C, for which 
reason the subehain eomprising these three links is known as a spherical 
wrist, point C being its center. By the same token, the subehain eomposed 
of the first four links is ealled the arm. Thus, the wrist is decoupled from 
the arm, and is used for orientation purposes, the arm being used for the 
positioning of point C. The arm is sometimes ealled the regional structure 
and the wrist the local structure, the overall manipulator thus being of the 
decoupled type. 

In the foregoing diseussion, if the ith pair is R, then all quantities involved 
in those definitions are eonstant, exeept for (}i, which is variable and is thus 
termed the joint variable of the ith pair. The other quantities, i.e., ai, bi , and 
Qi, are the joint parameters of the said pair. If, alternatively, the ith pair is 
P, then bi is variable, and the other quantities are eonstant. In this ease, the 
joint variable is bi , and the joint parameters are ai, Qi, and (}i. Notiee that 
associated with each joint there are exaetly one joint variable and three 
eonstant parameters. Henee, an n-axis manipulator has n joint variables
whieh are heneeforth grouped in the n-dimensional veetor 8, regardless of 
whether the joint variables are angular or translational-and 3n eonstant 
parameters. The latter define the architecture of the manipulator, while the 
former determine its configuration, or posture. 

Whereas the manipulator arehiteeture is fully defined by its 3n Denavit
Hartenberg (DH) parameters, its post ure is fully defined by its n joint vari
ables, also ealled its joint coordinates, onee the DH parameters are known. 
The relative position and orientation between links is fully specified, then, 
from the diseussions of Chapter 2, by (i) the rotation matrix taking the 
Xi, Yi, Zi axes into a eonfiguration in which they are parallel pairwise 
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FIGURE 4.4. Relative orientation of the ith and (i + l)st co ordinate frames. 

to the X H1 , Yi+l, ZHI axes, and (ii) the position vector of the origin of 
the latter in the former. The representations of the foregoing items in co
ordinate frame F i will be discussed presently. First, we obtain the matrix 
representation of the rotation Qi carrying F i into an orientation coincident 
with that of F H1 , assuming, without loss of generality because we are in
terested only in changes of orientation, that the two origins are coincident, 
as depicted in Fig. 4.4. This matrix is most easily derived if the rotation 
of interest is decomposed into two rotations, as indicated in Fig. 4.5. In 
that figure, XI, Y/, ZI is an intermediate coordinate frame FI, obtained by 
rotating F i about the Zi axis through an angle Bi. Then, the intermediate 
frame is rotated about Xi' through an angle O::i, which takes it into a con
figuration coincident with Fi+l. Let the foregoing rotations be denoted by 
[ Ci Ji and [Ai k, respectively, which are readily derived for they are in the 
canonical forms (2.55c) and (2.55a), respectively. 

Moreover, let 
(4.1a) 

One thus has, using subscripted brackets as introduced in Section 2.2, 
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zf 
Zi+l 

zf 

yf 

(a) (b) 

FIGURE 4.5. Ca) Rotation about axis Zi through an angle Bi; and (b) relative 
orientation of the i'th and the (i + l)st coordinate frarnes. 

and clearly, the matrix sought is computed simply as 

( 4.1b) 

Henceforth, we will use the abbreviations introduced below: 

(4.1c) 

thereby doing away with brackets, when these are self-evident. Thus, 

-Ai sin (Ji 

Ai cos (Ji 

Mi 
(4.1d) 

One more factoring of matrix Qi, which finds applications in manipulator 
kinematics, is given below: 

(4.2a) 

with Xi and Zi defined as two reflections, the former about the YiZi plane, 
the latter ab out the XiYi plane, namely, 

~l (4.2b) 

In order to derive an expression for the position vector ai connecting 
the origin Oi of F i with that of Fi+l, 0i+l, reference is made to Fig. 4.6, 
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showing the relative positions of the different origins and axes involved. 
From this figure, clearly, 

(4.3a) 

where obviously, 

Now, in order to compute the sum appearing in eq.(4.3a), the two fore
going vectors should be expressed in the same coordinate frame, namely, 
fi. Thus, 

and hence, 

[a,[; ~ [::~~:: 1 (4.3b) 

For brevity, we introduce the following definition: 

(4.3c) 

Similar to the foregoing factoring of Qi, vector ai admits the factoring 

(4.3d) 

where b i is given by 

[
ai 1 b i == biJ.Li 

bi)..i 

(4.3e) 

with the definitions introduced in eq.(4.1a). Hence, vector b i is constant 
for revolute pairs. 

Matrices Qi can also be regarded as co ordinate transformations. Indeed, 
let ii, ji, and k i be the unit vectors parallel to the Xi, Yi, and Zi axes, 
respectively, directed in the positive direction of these axes. From Fig. 4.6, 
it is apparent that 
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Zi-l 

FIGURE 4.6. Layout of three successive coordinate frarnes. 

whence 

Therefore, the components of iH1 , jHb and k H1 in F i are nothing but 
the first, second, and third columns of Qi. In general, then, any vector v 
in F H1 is transformed into F i in the form 

which is a similarity transformation, as defined in eq.(2.117). Likewise, any 
matrix M in Fi+l is transformed into F i by the corresponding similarity 
transformation, as given by eq.(2.128): 

The inverse relations follow immediately in the form 

or upon recalling the first of definitions (4.Ic), 

[V]i = Q;[ V ]Hl, 

[V]Hl = Qf[V]i, 

[M]i = Q;[M]HIQ; 

[M]Hl = Qf[M]iQi 

(4.4a) 

(4.4b) 
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Moreover, if we have a chain of i frames, F 1 , F2 , •.. , F i , then the inward 
coordinate transformation from F i to F 1 is given by 

[vh =QIQ2···Qi-l[V]i 

[Mh = QIQ2··· Qi-dM]i(QIQ2··· Qi-l? 

Likewise, the outward co ordinate transformation takes the form 

[V]i = (QIQ2···Qi-l?[vh 

[M]i = (QIQ2··· Qi-l?[MhQlQ2··· Qi-l 

(4.5a) 

(4.5b) 

(4.6a) 

(4.6b) 

4.3 The Kinematics of Six-Revolute Manipulators 

The kinematics of serial manipulators comprises the study of the relations 
between joint variables and Cartesian variables. The former were defined in 
Section 4.2 as those determining the posture of a given manipulator, with 
one such variable per joint; a six-axis manipulator, like the one displayed in 
Fig. 4.7, thus has sixjoint variables, {h, (h, ... , ()6. The Cartesian variables 
of a manipulator, in turn, are those variables defining the pose of the EE; 
since six independent variables are needed to define the pose of a rigid 
body, the manipulator of Fig. 4.7 thus contains six Cartesian variables. 

The study outlined above pertains to the geometry of the manipulator, 
for it involves one single pose of the EE. Besides geometry, the kinematics of 
manipulators comprises the study of the relations between the time-rates of 
change of the joint variables, referred to as the joint rates, and the twist of 
the EE. Additionally, the relations between the second time-derivatives of 
the joint variables, referred to as the joint accelerations, with the time-rate 
of change of the twist of the EE are also studied in this chapter. 

In this section and in Section 4.4 we study the geometry of manipulators. 
In this regard, we distinguish two problems, commonly referred to as the 
direct and the inverse kinematic problems, or DKP and correspondingly, 
IKP, for brevity. In the DKP, the six joint variables of a given six-axis 
manipulator are assumed to be known, the problem consisting of finding 
the pose of the EE. In the IKP, on the contrary, the pose of the EE is given, 
while the six joint variables that produce this pose are to be found. 

The DKP reduces to matrix multiplications, and as we shall show pres
ently, poses no major problem. The IKP, however, is more challenging, 
for it involves intensive variable-elimination and nonlinear-equation solv
ing. Indeed, in the most general case, the IKP amounts to eliminating five 
out of the six unknowns, with the aim of reducing the problem to a single 
monovariate polynomial of up to 16th degree. While finding the roots of a 
polynomial of this degree is no longer an insurmountable task, reducing the 
underlying system of nonlinear equations to a monovariate polynomial re
quires intensive computer-algebra work that must be very carefully planned 
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FIGURE 4.7. Serial six-axis manipulator. 

to avoid the introduetion of spurious roots and, with this, an inerease in 
the degree of that polynomial. For this reason, we limit this chapter to the 
study of the geometrie IKP of decoupled six-axis manipulators, to be de
fined presently. The IKP of the most general six-revolute serial manipulator 
is studied in Chapter 8. 

In studying the DKP of six-axis manipulators, we need not limit ourselves 
to a particular architecture. We thus study here the DKP of general manip
ulators, such as the one sketehed in Fig. 4.7. This manipulator eonsists of 
seven rigid bodies, or links, coupled by six revolute joints. Correspondingly, 
we have seven frames, F1 , F2 , ... , F7 , the ith frame fixed to the (i - l)st 
link, F 1 being termed the base frame, because it is fixed to the base of the 
manipulator. Manipulators with joints of the prismatic type are simpler to 
study and can be treated using correspondingly simpler procedures. 

A line .ci is associated with the axis of the ith revolute joint, and a 
positive direction along this line is defined arbitrarily through a unit vector 
ei. For a prismatie pair, a line .ci can be also defined, as a line having the 
direction of the pair but whose loeation is undefined; the analyst, then, has 
the freedom to locate this axis conveniently. Thus, a rotation of the ith link 
with respect to the (i - l)st link or correspondingly, of Fi+l with respect 
to F i , is totally defined by the geometry of the said link, i.e., by the DH 
parameters ai, bi , and (}:i, plus ei and its associated joint variable ()i. Then, 
the DH parameters and the joint variables define uniquely the posture of 
the manipulator. In particular, the relative position and orientation of Fi+l 
with respect to Fi is given by matrix Qi and vector ai, respeetively, whieh 
were defined in Seetion 4.2 and are displayed below for quiek referenee: 

[ 

COS ()i 

Qi = Si~ ()i 
- Ai sin ()i 
Ai COS ()i 

J.Li 

J.Li sin ()i 1 
-I/.. cos()· ,....,1. 'L' 

Ai 
(4.7) 
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Thus, Qi and ai denote, respectively, the matrix rotating F i into an 
orientation coincident with that of Fi+I and the vector joining the origin 
of F i with that of Fi+I, directed from the former to the latter. Moreover, Qi 
and ai, as given in eq. (4.7), are represented in F i coordinates. The equations 
leading to the kinematic model under study are known as the kinematic 
displacement equations. It is noteworthy that the problem under study is 
equivalent to the input-output analysis problem of a seven-revolute linkage 
with one degree of freedom and one single kinematic loop (Duffy, 1980). 
Because of this equivalence with a closed kinematic chain, sometimes the 
displacement equations are also termed closure equations. These equations 
relate the orientation of the EE, as produced by the joint coordinates, with 
the prescribed orientation Q and the position vector p of the operation 
point P of the EE. That is, the orientation Q of the EE is obtained as 
a result of the six individual rotations {Qi}~ about each revolute axis 
through an angle ei , in a sequential order, from 1 to 6. If, for example, the 
foregoing relations are expressed in F I , then 

[Q6h[Q5h[Q4h[Q3h[Q2h[QdI = [Qh 

[adl + [a2h + [a3h + [a4h + [a5h + [a6h = [ph 

(4.8a) 

(4.8b) 

Notice that the above equations require that all vectors and matrices 
involved be expressed in the same coordinate frame. However, we derived 
in Section 4.2 general expressions for Qi and ai in F i , eqs.(4.1d) and (4.3b), 
respectively. It is hence convenient to represent the foregoing relations in 
each individual frame, which can be readily done by means of similarity 
transformations. Indeed, if we apply the transformations (4.5a & b) to each 
of [ad 1 and [Qd 1, respectively, we obtain ai or correspondingly, Qi, in 
F i . Therefore, eq.(4.8a) becomes 

Now for compactness, let us represent [Q h simply by Q and let us recall 
the abbreviated notation introduced in eq.(4.1c), whereby [Qi li is denoted 
simply by Qi, thereby obtaining 

QI Q2Q3Q4Q5Q6 = Q 

Likewise, eq. (4.8b) becomes 

(4.9a) 

al +QIa2+QIQ2a3+QIQ2Q3~+QIQ2Q3Q4a5+QIQ2Q3Q4Q5a6 = p 
(4.9b) 

in which both sides are given in base-frame coordinates. Equations (4.9a 
& b) above can be cast in a more compact form if homogeneous trans
formations, as defined in Section 2.5, are now introduced. Thus, if we let 
Ti == {Ti h be the 4 x 4 matrix transforming Fi+I-cOordinates into F i -

coordinates, the foregoing equations can be written in 4 x 4 matrix form, 
namely, 

(4.10) 
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with T denoting the transformation of coordinates from the end-efIector 
frame to the base frame. Thus, T contains the pose of the end-efIector. 

In order to ease the discussion ahead, we introduce now a few defini
tions. A scalar, vector, or matrix expression is said to be multilinear in 
a set of vectors {vdf" if those vectors appear only linearly in the same 
expression. This does not prevent products of components of those vectors 
from occurring, as long as each product contains only one component of 
the same vector. Alternatively, we can say that the expression of interest 
is multilinear in the aforementioned set of vectors if and only if the partial 
derivative of that expression with respect to vector Vi is independent of 
Vi, for i = 1, ... , N. For example, every matrix Qi and every vector ai, 
defined in eqs.(4.1d) and (4.3b), respectively, is linear in vector Xi, where 
Xi is defined as 

. = [COSBi] x._ . LI SlllUi (4.11) 

Moreover, the product Q1Q2Q3Q4Q5Q6 appearing in eq.(4.9a) is hexalin
ear, or simply, multilinear, in vectors {Xi H. Likewise, the sum appearing 
in eq.(4.9b) is multilinear in the same set of vectors. By the same token, 
a scalar, vector, or matrix expression is said to be multiquadratic in the 
same set of vectors if those vectors appear at most quadratically in the 
said expression. That is, the expression of interest may contain products 
of the components of all those vectors, as long as those products contain, 
in turn, a maximum of two components of the same vector, including the 
same component squared. Qualifiers like multicubic, multiquartic, etc. bear 
similar meanings. 

Further, we partition matrix Qi rowwise and columnwise, namely, 

(4.12) 

It is pointed out that the third row of Qi, 0;, is independent of Bi, a fact 
that will be found useful in the forthcoming derivations. Furthermore, note 
that according with the DH notation, the unit vector ei in the direction of 
the ith joint axis in Fig. 4.7 has Fi-components given by 

(4.13) 

Henceforth, e is used to represent a 3-dimensional array with its last 
component equal to unity, its other components vanishing. Thus, we have 

(4.14a) 

or 
(4.14b) 
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That is, ifwe regard e in the first ofthe foregoing relations as [ei+lli+l, and 
as [ei Ji in the second relation, then, from the co ordinate transformations 
of eqs.(4.4a & b), 

(4.15) 

4.4 The IKP of Decoupled Manipulators 

Industrial manipulators are frequently supplied with a special architecture 
that allows a decoupling of the positioning problem from the orientation 
problem. In fact, a determinant design criterion in this regard has been 
that the manipulator be kinematically invertible, i.e., that it lend itself to 
a closed-form inverse kinematics solution. Although the class of manipula
tors with this feature is quite broad, we will focus on a special kind, the most 
frequently encountered in commercial manipulators, that we will term de
coupled. Decoupled manipulators were defined in Section 4.2 as those whose 
last three joints have intersecting axes. These joints, then, constitute the 
wrist of the manipulator, which is said to be spherical, because when the 
point of intersection of the three wrist axes, C, is kept fixed, all the points 
of the wrist move on spheres centered at C. In terms of the DH param
eters of the manipulator, in a decoupled manipulator a4 = a5 = b5 = 0, 
and thus, the origins of frames 4, 5, and 6 are coincident. All other DH 
parameters can assurne arbitrary values. A general decoupled manipulator 
is shown in Fig. 4.8, where the wrist is represented as a concatenation of 
three revolutes with intersecting axes. 

FIGURE 4.8. A general 6R manipulator with decoupled architecture. 
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In the two subsections below, a procedure is derived for determining 
all the inverse kinematics solutions of decoupled manipulators. In view of 
the decoupled architecture of these manipulators, we study their inverse 
kinematics by decoupling the positioning problem from the orientation 
problem. 

4-4.1 The Positioning Problem 

The inverse kinematics of the robotic manipulators under study begins by 
decoupling the positioning and orientation problems. Moreover, we must 
solve first the positioning problem, which is done in this subsection. 

Let C denote the intersection ofaxes 4, 5, and 6, i.e., the center of the 
spherical wrist, and let c denote the position vector of this point. Clearly, 
the position of C is independent of joint angles 04 , Os, and 06 ; hence, only 
the first three joints are to be considered for this analysis. The arm structure 
depicted in Fig. 4.9 will then be analyzed. From that figure, 

(4.16) 

where the two sides are expressed in :F1-coordinates. This equation can be 
readily rewritten in the form 

a2 + Q2a3 + Q2Q3a 4 = Qf(c - ad 

or ifwe recall eq.(4.3d), 

Q2(b2 + Q3b 3 + Q3Q4b 4) = Qf c - b 1 

However, since we are dealing with a decoupled manipulator, we have 

which has been rewritten as the product of constant b4 times the unit vector 
e defined in eq.(4.13). 

Thus, the product Q3Q4b4 reduces to 

Q3Q4b 4 == b4Q3e == b4 U 3 

with Ui defined in eq.(4.14b). Hence, eq.(4.16) leads to 

Q2(b2 + Q3b3 + b4U3) = Qf c - b 1 (4.17) 

Further, an expression for c can be derived in terms of p, the position 
vector of the operation point of the EE, and Q, namely, 

(4.18a) 
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Now, since a5 = b5 = 0, we have that a5 = 0, eq.(4.18a) thus yielding 

(4.18b) 

Moreover, the base coordinates of P and C, and hence, the F1-components 
of their position vectors p and c, are defined as 

so that eq.(4.18b) can be expanded in the form 

(4.18c) 

where qij is the (i,j) entry of [Qh, and the positioning problem now be
comes one of finding the first three joint angles necessary to position point 
C at a point of base coordinates Xc, Yc, and Zc. We thus have three un
knowns, but we also have three equations at our disposal, namely, the three 
scalar equations of eq. (4.17), and we should be able to solve the problem 
at hand. 

In solving the foregoing system of equations, we first note that (i) the 
left-hand side of eq.(4.17) appears multiplied by Q2; and (ii) ()2 does not 
appear in the right-hand side. This implies that (i) if the Euclidean norms 
of the two sides of that equation are equated, the resulting equation will 

FIGURE 4.9. Three-axis, serial, positioning manipulator. 
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not contain ()2; and (ii) the third scalar equation of the same equation is 
independent of ()2, by virtue of the structure of the Qi matrices displayed 
in eq.(4.1d). Thus, we have two equations free of ()2, which allows us to 
calculate the two remaining unknowns ()I and ()3' 

Let the Euclidean norm of the left-hand side of eq.( 4.17) be denoted by 
[, that of its right-hand side by r. We then have 

[2 == b~ + b~ + b~ + 2bfQ3b3 + 2b4bf U3 + 2b3 

r2 == IIcl1 2 + IIbI I1 2 - 2biQi c 

from which it is apparent that [2 is linear in X3 and r2 is linear in Xl, for 
Xi defined in eq.(4.11). Upon equating [2 with r2 , then, an equation linear 
in Xl and X3-not bilinear in these vectors-is readily derived, namely, 

whose coefficients do not contain any unknown, Le., 

A = 2alxc 

B = 2aIYc 

C = 2a2a3 - 2b2b4J.l2J.l3 

D = 2a3b2J.l2 + 2a2b4J.l3 

E = a~ + a~ + b~ + b~ + b~ - ai - x~ - y~ - (zc - bd2 

+2b2b3A2 + 2b2b4A2A3 + 2b3b4 A3 

Moreover, the third scalar equation of eq.( 4.17) takes on the form 

(4.19a) 

(4.19b) 

(4.19c) 

(4.19d) 

(4.1ge) 

(4.19f) 

(4.20a) 

whose coefficients, again, do not contain any unknown, as shown below: 

F = YCJ.lI 

G = -XCJ.lI 

H = -b4J.l2J.l3 

1= a3J.l2 

J = b2 + b3A2 + b4A2A3 - (zc - bdAI 

(4.20b) 

(4.20c) 

(4.20d) 

(4.20e) 

( 4.20f) 

Thus, we have derived two nonlinear equations in ()I and ()3 that are 
linear in Cl, SI, C3, and S3' Each of these equations thus defines a contour 
in the ()I-()3 plane, their intersections determining all real solutions to the 
problem at hand. 

Note that if Ci and Si are substituted for their equivalents in terms 
of tan(()d2), for i = 1,3, then two biquadratic polynomial equations in 
tan(()d2) and tan(()3/2) are derived. Thus, one can eliminate one of these 
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variables from the foregoing equations, thereby reducing the two equations 
to a single quartic polynomial equation in the other variable. The quartic 
equation thus resulting is called the characteristic equation of the problem 
at hand. Alternatively, the two above equations, eqs.(4.19a) and (4.20a), 
can be solved for, say, Cl and Sl in terms of the data and C3 and S3, namely, 

(4.21a) 

(4.21b) 

with ~l defined as 

(4.21c) 

Note that in trajectory planning, to be studied in Chapter 5, ~l can be 
computed off-line, i.e., prior to setting the manipulator into operation, for 
it is a function solely of the manipulator parameters and the Cartesian co
ordinates of a point lying on the path to be tracked. Moreover, the above 
calculations are possible as long as ~l does not vanish. Now, ~l vanishes if 
and only if any of the factors al, /-Ll, and xb + Yb does. The first two condi
tions are architecture-dependent, whereas the third is position-dependent. 
The former occur frequently in industrial manipulators, although not both 
at the same time. If both parameters al and /-Ll vanished, then the arm 
would be useless to position arbitrarily a point in space. The third condi
tion, i.e., the vanishing of xb + yb, means that point C lies on the Z 1 axis. 
Now, even if neither al nor /-Ll vanishes, the manipulator can be positioned 
in a configuration at which point C lies on the Zl axis. Such a configura
tion is termed the first singularity. Note, however, that with point C being 
located on the Zl axis, any motion of the first joint, with the two other 
joints locked, does not change the location of C. For the moment, it will be 
assumed that ~l does not vanish, the particular cases under which it does 
being studied later. Next, both sides of eqs.(4.21a & b) are squared, the 
squares thus obtained are then added, and the sum is equated to 1, which 
leads to a quadratic equation in X3, namely, 

whose coefficients, after simplification, are given below: 

K = 4a~H2 + /-L~C2 
L = 4a~I2 + /-L~D2 

M = 2(4a~HI + /-L~CD) 
N = 2(4a~ H J + /-L~CE) 
P = 2(4a~IJ + /-LiDE) 

Q = 4ai J2 + /-Li E2 - 4a~/-Lip2 

(4.22) 

(4.23a) 

(4.23b) 

(4.23c) 

(4.23d) 

(4.23e) 

(4.23f) 
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with p2 defined as 
p2 == x~ + y~ 

Now, two well-known trigonometrie identities are introdueed, namely, 

_ 1 - T~ _ 2T3 _ ((h) 
C3 = --2' 83 = --2' where T3 = tan -

1 + T3 1 + T3 2 
(4.24) 

Heneeforth, the foregoing identities will be referred to as the tan-half-angle 
identitie8. We will be resorting to them throughout the book. Upon sub
stitution of the foregoing identities into eq.(4.22), a quartie equation in T3 
is obtained, i.e., 

RTt + ST: + TTl + U T3 + V = 0 ( 4.25) 

whose eoeffieients are all eomputable from the data. After some simplifiea
tions, these eoefficients take on the forms 

R = 4ai(J - H)2 + f-ti(E - C)2 - 4p2aif-ti 

S = 4[4aU(J - H) + f-tiD(E - C)) 

T = 2[4ai(J2 - H 2 + 212 ) + f-ti(E2 - C2 + 2D2) 

-4p2aif-tiJ 

U = 4[4aiI(H + J) + f-tiD(C + E)J 

V = 4ai(J + H)2 + f-ti(E + C)2 - 4p2aif-ti 

(4.26a) 

(4.26b) 

(4.26e) 

(4.26d) 

(4.26e) 

Furthermore, let {(T3)i H be the four roots of eq.(4.25). Thus, up to four 
possible values of (h ean be obtained, namely, 

(4.27) 

Onee the four values of 03 are available, eaeh of these is substituted into 
eqs.(4.21a & b), whieh thus produee four different values of 01 • For eaeh 
value of 01 and 03 , then, one value of O2 ean be eomputed from the first 
two sealar equations of eq.(4.17), whieh are displayed below: 

where 

All eos O2 + A 12 sin O2 = Xc eos 01 + Yc sin 01 - al (4.28a) 

-A12 eos02 + All sin02 = -XCAI sinOl + YCAI eosOl 

+ (zc - b1)f-tl (4.28b) 

All == a2 + a3 eos 03 + b4f-t3 sin 03 

A12 == -a3A2 sin 03 + b3f-t2 + b4A2f-t3 eos 03 + b4f-t2A3 

(4.28e) 

( 4.28d) 

Thus, if All and A 12 do not vanish simultaneously, angle O2 is readily 
eomputed in terms of 01 and 03 from eqs.(4.28a & b) as 

1 
eos O2 = ß2 {All (xc eos 01 + Yc sin 01 - al) 
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-A12[-XCAlsinOl +YcAleosOl 

+ (zc - b1)1l1]) 

Sin02 = ~2 {A12(xceosOl + YCsinOl - at} 

+All[-XCAI sinOl + YCAI eosOl 

+ (ZC - b1)1l1]) 

where ~2 is defined as 

~2 == A~l + A~2 
== a~ + (eos O~ + A~ sin O~) a~ + b~ll~ + 2a2 a3 eos 03 

- 2a3b3A21l2 sin 03 

(4.29a) 

(4.29b) 

(4.2ge) 

the ease in which ~2 = 0, which leads to what is termed here the second 
singularity, being diseussed presently. 

Takano (1985) eonsidered the solution of the positioning problem for 
all possible eombinations of prismatie and revolute pairs in the regional 
strueture of a manipulator, thereby finding that 

1. In the ease of arms eontaining either three revolutes, or two revolutes 
and one prismatie pair, with a general layout in all eases, a quartie 
equation in eos 03 was obtained; 

2. in the ease of one revolute and two prismatie pairs, the positioning 
problem was redueed to a single quadratie equation, the problem at 
hand thus admitting two solutions; 

3. finally, for three prismatic pairs, a single linear equation was derived, 
the problem thus admitting a unique solution. 

The Vanishing 0/ D..l 

In the above derivat ions we have assumed that neither 111 nor al vanishes. 
However, if either 111 = 0 or al = 0, then one ean readily show that eq.( 4.25) 
reduees to a quadratic equation, and hence, this case differs essentially 
from the general one. Note that one of these conditions can occur, and the 
second occurs indeed frequently, but both together never occur, because 
their simultaneous occurrence would render the manipulator useless for a 
three-dimensional task. We thus have the two cases discussed below: 

1. 111 = 0, al =1= O. In this case, one has 

A, B =1= 0, F = G = 0 

Under these conditions, eq.(4.20a) and the tan-half-angle identities 
given in eq.(4.24) yield 

(J - H)Tj + 2lT3 + (J + H) = 0 
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whieh thus produees two values of T3, namely, 

-I ± JI2 - J2 + H2 
(T3h,2 = J - H (4.30a) 

Onee two values of (}3 have been determined aeeording to the above 
equation, (}l ean be found using eq.( 4.19a) and the tan-half-angle 
identities, thereby deriving 

(E' - A)Tf + 2BTl + (E' + A) = 0 

where 

E' = CC3 + D83 + E, Tl == tan (~l ) 
whose roots are 

- B ± J B2 - E'2 + A 2 

(Tlh,2 = E' - A (4.30b) 

Thus, two values of (}l are found for eaeh of the two values of (}3, 
whieh results in four positioning solutions. Values of (}2 are obtained 
using eqs.(4.29a & b). 

2. al = 0, /-LI =1= O. In this ease, one has an arehiteeture similar to that 
of the robot of Fig. 4.3. We have now 

A = B = 0, F, G =1= 0 

Under the present eonditions, eq.( 4.19a) reduees to 

(E - C)Tj + 2DT3 + (E + C) = 0 

whieh produces two values of T3, namely, 

(4.31a) 

With the two values of (}3 obtained, (}l ean be found using eq.(4.20a) 
and the tan-half-angle identities to produee 

where 

whose roots are 

(J' - F)Tf + 2GTl + (J' + F) = 0 

J' = H C3 + 183 + J, 
(}l 

Tl == tan( -) 
2 

-G ± J G2 - J'2 + F2 
(Tlh,2 = J' - F (4.31b) 
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Onee again, the solution results in a easeade of two quadratic equa
tions, one for (h and one for (h, whieh yields four positioning solutions. 
As above, (}2 is then determined using eqs.(4.29a & b). Note that for 
the special ease of the manipulator of Fig. 4.3, we have 

and henee, 

C = H = 1=0, E = a~ + a~ + b~ + b~ - [x~ + y~ + (zc - b1 )2] , 

D = 2a2b4, F = Yc, G = -Xc, J = b3 

In this ease, the foregoing solutions reduee to 

A robot with the arehiteeture studied here is the Puma, which is dis
played in Fig. 4.10 in its four distinet postures for the same loeation of its 
wrist center. Notice that the orientation of the EE is kept eonstant in all 
four postures. 

The Vanishing 0/ ~2 

In some instanees, ~2, as defined in eq. (4.2ge), may vanish, thereby pre
venting the ealculation of (}2 from eqs.(4.29a & b). This posture, termed 
the seeond singularity, oeeurs if both eoeffieients All and A 12 of eqs. (4.28a 
& b) vanish. Note that from their definitions, eqs.(4.28e & d), these co
efficients are not only position- but also arehiteeture-dependent. Thus, an 
arbitrary manipulator eannot take on this configuration unless its geometrie 
dimensions allow it. This type of singularity will be termed arehiteeture
dependent, to distinguish it from others that are eommon to all robots, 
regardless of their partieular arehiteetures. 

We ean now give a geometrie interpretation of the singularity at hand: 
First, note that the right-hand side of eq.(4.17), from which eqs.( 4.28a & b) 
were derived, is identical to Qf(C-al), whieh means that this expression is 
not hing but the .r2-representation of the position veetor of C. That is, the 

eomponents of vector Qf(c - al) are the .r2-eomponents of veetor 0 26. 
Therefore, the two sides of eqs.(4.28a & b) are, respeetively, the X 2- and 

Y2-eomponents of vector 0 26. Therefore, if All = A 12 = 0, then the two 
foregoing components vanish and, as a eonsequenee, point C lies on the Z2 
axis. Henee, the first singularity oeeurs when point C lies on the axis of 
the first revolute, while the seeond oeeurs when the same point lies on the 
axis of the seeond revolute. 

Many industrial manipulators are designed with an orthogonal arehitee
ture, which means that the angles between neighbor axes are multiples 
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(a) 

(c) (d) 

FIGURE 4.10. The four arm eonfigurations for the positioning problem of the 
Puma robot: (a) and (b), elbow down; (a) and (e), shoulder fore; (e) and (d), 
elbow up; (b) and (d), shoulder aft. 

of 90°. Moreover, with the purpose of maximizing their workspace, or
thogonal manipulators are designed with their se co nd and third links of 
equallengths, thereby rendering them vulnerable to this type of singular
ity. An architecture common to many manipulators such as the Cincinnati
Milacron, ABB, Fanuc, and others, comprises a planar two-axis layout with 
equallink lengths, which is capable of turning about an axis orthogonal to 
these two axes. This layout allows for the architecture singularity under 
discussion, as shown in Fig. 4.11a. The well-known Puma manipulator is 
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(b) 

FIGURE 4.11. Architecture-dependent singularities of (a) the Cincinnati-Milacron 
and (b) the Puma robots. 

similar to the aforementioned manipulators, except that it is supplied with 
what is called a shoulder offset b3 , as illustrated in Fig. 4.3. This offset, 
however, does not prevent the Puma from attaining the same singularity 
as depicted in Fig. 4.11b. Note that in the presence ofthis singularity, angle 
(h is undetermined, but (}l and (}3 are determined in the case of the Puma 
robot. However, in the presence of the singularity of Fig. 4.11a, neither (}l 

nor (}2 are determined; only (}3 of the arm structure is determined. 

Example 4.4.1 A manipulator with a common orthogonal architecture is 
displayed in Fig. 4.12 in an arbitrary conjiguration. The arm architecture 
01 this manipulator has the DH parameters shown below: 

al = 0, bl = b2 = b3 = 0, GI = 90°, G2 = 0° 

Find its inverse kinematics solutions. 

Solution: A common feature ofthis architecture is that it comprises a2 = b4. 

In the present discussion, however, the latter feature need not be included, 
and hence, the result that follows applies even in its absence. In this case, 
coefficients C, D, and E take on the forms 

C 2 D 0 E 2 2 (2 2 2) = a2a3, =, = a2 + a3 - Xc + Yc + Zc 

Hence, 
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FIGURE 4.12. An orthogonal decoupled manipulator. 

Moreover, 
H=I=J=O 

and so 
J' = 0, F = Yc, G = -Xc 

The radical of eq.(4.31b) reduces to x~ + y~. Thus, 

tan(Ol) = Xc ± ..)x~ + y~ == -1 ± ..)1 + (Yc/xc)2 
2 -Yc Yc/xc 

(4.32a) 

Now we recall the relation between tan(Od2) and tanOl, namely, 

tan(Ol) == -1 ±..)1 + tan2 Ol 
2 tanOl 

(4.32b) 

Upon comparison of eqs.(4.32a) and (4.32b), it is apparent that 

Ol = arctan (~~ ) 
a result that can be derived geometrically for this simple arm architecture. 
Given that the arctan(·) function is double-valued, its two values differing 
in 1800 , we obtain here, again, two values for Ol' On the other hand, 03 is 
calculated from eq.(4.31a) as 
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XI 
a 

C(O,2a, - a) 

FIGURE 4.13. An orthogonal RRR manipulator. 

thereby obtaining two values of °3 . As a consequence, the inverse position
ing problem of this arm architecture admits four solutions as weIl. These 
solutions give rise to two pairs of arm postures that are usually referred to 
as elbow-up and elbow-down. 

Example 4.4.2 Find all real inverse kinematic solutions 01 the manip
ulator shown in Fig. 4.13, when point C 01 its end-effector has the base 
coordinates C(O, 2a, -a). 

Solution: The Denavit-Hartenberg parameters of this manipulator are de
rived from Fig. 4.14, where the co ordinate frames involved are indicated. 
In defining the coordinate frames of that figure, the Denavit-Hartenberg 
notation was followed, with Z4 defined, arbitrarily, as parallel to Z3. From 
Fig. 4.14, then, we have 

One inverse kinematic solution can be readily inferred from the geom
etry of Fig. 4.14. For illustration purposes, and in order to find all other 
inverse kinematic solutions, we will use the procedure derived above. To this 
end, we first proceed to calculate the coefficients of the quartic polynomial 
equation, eq.(4.25), which are given, nevertheless, in terms of coefficients 
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X1 

a 

a 

FIGURE 4.14. The coordinate frarnes of the orthogonal RRR manipulator. 

K, ... , Q of eqs.(4.23a-f). These coefficients are given, in turn, in terms 
of coefficients A, ... , J of eqs.(4.19b-f) and (4.20b-f). We then proceed to 
calculate all the necessary coefficients in the proper order: 

Moreover, 

A = 0, B = 4a2 , C = D = - E = 2a2 

F = 2a, G = H = 0, 1 = J = a 

K = C 2F 2 = 16a2 

L = B 212 + D2 F 2 = 32a6 

M = 2F2CD = 32a6 

N = 2F2CE = -32a6 

P = 2(B21J + DEF2 ) = 0 

Q = E 2 F 2 + B 2 J2 - F 2 B 2 = -32a6 

The set of coefficients sought thus reduces to 

R = K - N + Q = 16a6 
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S = 2(P - M) = -64a6 

T = 2( Q + 2L - K) = 32a6 

U = 2(M + P) = 64a6 

V = K + N + Q = -48a6 

which leads to the quartic equation given below: 

Ti - Mi + 2Tj + 4T3 - 3 = 0 

with four real roots, namely, 

These roots yield the (h values that follow: 

The quartic polynomial thus admits one double root, which means that at 
the configurations resulting from this root, two solutions meet, thereby pro
ducing a 8ingularity, an issue that is discussed in Subsection 4.5.2. Below, 
we calculate the remaining angles for each solution: Angle (h is computed 
from relations (4.21a-c), where ß 1 = -8a3 • 

The first two roots, (03h = (03h = 900 , yield C3 = 0 and 83 = 1. Hence, 
eqs.(4.21a & b) lead to 

and hence, 
(Olh = (Olh = 1800 

With 01 known, O2 is computed from the first two of eqs. (4.17), namely, 

and hence, 

The remaining roots are treated likewise. These are readily calculated as 
shown below: 

It is noteworthy that the architecture of this manipulator does not allow 
for the second singularity, associated with ß2 = o. 
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FIGURE 4.15. Manipulator configuration for P(O, a, 0). 

ExalTIpie 4.4.3 For the same manipulator 01 Example 4.4.2, find all real 
inverse kinematic solutions when point C of its end-effector has the base 
coordinates C(O, a, 0), as displayed in Fig. 4.15. 

Solution: In this case, one obtains, successively, 

A=O, B=C=D=E=2a2 , 

F = a, G = 0 H = 0, I = J = a 

K = 4a6 , L = M = N = 8a6 , P = 16a6 , Q = 4a6 

R = 0, S = 16a6 , T = 32a6 , U = 48a6 , V = 16a6 

Moreover, for this case, the quartic eq.(4.22) degenerates into a cubic 
equation, namely, 

Tl + 2T; + 3T3 + 1 = 0 

whose roots are readily found as 

(T3h = -0.43016, (T3h,3 = -0.78492 ± j1.30714 
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where j is the imaginary unit, i.e., j == A. That is, only One real solution 
is obtained, namely, (03h = -46.551°. However, shown in Fig. 4.15 is a 
quite symmetrie post ure of this manipulator at the given position of point C 
of its end-effector, which does not correspond to the real solution obtained 
above. In fact, the solution yielding the posture of Fig. 4.15 disappeared 
because of the use of the quartic polynomial equation in tan(03/2). Note 
that if the two contours derived from eqs.(4.19a) and (4.20a) are plotted, 
as in Fig. 4.16, their intersections yield the two real roots, including the 
One leading to the posture of Fig. 4.15. 

The explanation of how the fourth root of the quartic equation disap
peared is given below: Let us write the quartie polynomial in full, with a 
"small" leading coefficient €, namely, 

U pon dividing both sides of the foregoing equation by Ti, we obtain 

from whieh it is clear that the original equation is satisfied as € --t 0 if and 
only if T3 --t ±oo, i.e, if 03 = 180°. It is then apparent that the missing 
root is 03 = 180°. The remaining angles are readily calculated as 

4-4-2 The Orientation Problem 

Now the orientation inverse kinematic problem is addressed. This problem 
consists of determining the wrist angles that will produce a prescribed 
orientation of the end-effector. This orientation, in turn, is given in terms 
of the rotation matrix Q taking the end-effector from its horne attitude to 
its current one. Alternatively, the orientation can be given by the natural 
invariants of the rotation matrix, vector e and angle cp. Moreover, since 01 , 

O2 , and 03 are available, Ql, Q2, and Q3 become data for this problem. 
One nOw has the general layout of Fig. 4.17, where angles { Oi }~ are to be 
determined from the problem data, whieh are in this case the orientation 
of the end-effector and the architecture of the wrist; the latter is defined 
by angles 0:4 and 0:5, neither of whieh can be either 0 or 'Ir. 

Now, since the orient at ion of the end-effector is given, we know the 
components of vector e6 in any coordinate frame. In particular, let 

(4.33) 
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FIGURE 4.16. Contours producing the two real solutions for Example 4.3. 

Moreover, the components of vector e5 in :F4 are nothing but the entries 
of the third column of matrix Q4, i.e., 

(4.34) 

Furthermore, vectors e5 and e6 make an angle (}:5, and hence, 

(4.35) 

Upon substitution of eqs.(4.33) and (4.34) into eq.(4.35), we obtain 

(4.36) 

which can be readily transformed, with the aid of the tan-half-angle iden
tities, into a quadratic equation in 74 == tan({}4/2), namely, 

(4.37) 

its two roots being given by 

(4.38) 
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FIGURE 4.17. General architecture of a spherical wrist. 

Note that the two foregoing roots are real as long as the radical is positive, 
the two roots merging into a single one when the radical vanishes. Thus, a 
negative radical means an attitude of the EE that is not feasible with the 
wrist. It is to be pointed out here that a three-revolute spherical wrist is 
kinematically equivalent to a spherical joint. However, the spherical wrist 
differs essentially from a spherical joint in that the latter has, kinematically, 
an unlimited workspace-a physical spherical joint, of course, has a limited 
workspace by virtue of its mechanical construction-and can orient a rigid 
body arbitrarily. Therefore, the workspace W of the wrist is not unlimited, 
but rat her defined by the set of values of ~, TJ, and ( that satisfy the two 
relations shown below: 

e + TJ2 + (2 = 1 

f(~, TJ, () == (e + TJ2)J.L~ - (A5 - (A4)2 2 0 

(4.39a) 

(4.39b) 

In view of condition (4.39a), however, relation (4.39b) simplifies to an 
inequality in ( alone, namely, 

(4.40) 

As a consequence, 
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1. W is a region of the unit sphere S centered at the origin of the 
three-dimensional space; 

2. W is bounded by the curve F(() = 0 on the sphere; 

3. the wrist attains its singular configurations along the curve F(() = 0 
lying on the surface of S. 

In order to gain more insight on the shape of the workspace W, let us 
look at the boundary defined by F(() = O. Upon setting F(() to zero, we 
obtain a quadratic equation in (, whose two roots can be readily found to 
be 

(4.41 ) 

which thus defines two planes, II1 and II2 , parallel to the ~-'" plane of the 
three-dimensional space, intersecting the (-axis at (1 and (2, respectively. 
Thus, the workspace W of the spherical wrist at hand is that region of the 
surface of the unit sphere S contained between II1 and II2 . For example, a 
common wrist design involves an orthogonal architecture, i.e., 0!4 = 0!5 = 
900 • For such wrists, 

(1,2 = ±1 

and hence, orthogonal wrists become singular when [e6]4 = [0, 0, ±1 jT, 
i.e., when the fourth and the sixth axes are aligned. Thus, the workspace 
of orthogonal spherical wrists is the whole surface of the unit sphere cen
tered at the origin, the singularity curve thus degenerating into two points, 
namely, the two intersections of this sphere with the (-axis. If one views 
( = 0 as the equatorial plane, then the two singularity points of the 
workspace are the poles. 

An alternative design is the so-called three-roll wrist of some Cincinnati
Milacron robots, with 0!4 = 0!5 = 1200 , thereby leading to A4 = A5 = -1/2 
and J.L4 = J.L5 = ,;3/2. For this wrist, the two planes II1 and II2 are found 
below: First, we note that with the foregoing values, 

and hence, the workspace of this wrist is the part of the surface of the unit 
sphere S that lies between the planes II1 and II2 parallel to the ~-'" plane, 
intersecting the (-axis at (1 = 1 and (2 = -1/2, respectively. Hence, if 
( = 0 is regarded as the equatorial plane, then the points of the sphere S 
that are outside of the workspace of this wrist are those lying at a latitude 
of less than -300 • The singularity points are thus the north pole and the 
parallel of latitude -300 • 

Once ()4 is calculated from the two foregoing values of 74, if these are 
real, angle ()5 is obtained uniquely for each value of ()4, as explained below: 
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First, eq.(4.9a) is rewritten in a form in which the data are collected in the 
right-hand side, which pro duces 

(4.42a) 

with R defined as 
(4.42b) 

Moreover, let the entries of R in the fourth co ordinate frame be given as 

r12 r13] 
r22 r23 

r32 r33 

Expressions for 05 and 06 can be readily derived by solving first for Q5 
from eq.(4.42a), namely, 

( 4.43) 

Now, by virtue ofthe form ofthe Qi matrices, as appearing in eq.(4.1d), 
it is apparent that the third row of Qi does not contain Oi. Hence, the third 
column of the matrix product of eq.(4.43) is independent of 06 . Thus, two 
equations for 05 are obtained by equating the first two components of the 
third rows of that equation, thereby obtaining 

J.l5 S5 = (J.l6r 12 + A6 r 13)C4 + (J.l6r22 + A6r 23)S4 

-J.l5C5 = -A4(J.lijr 12 + Aij r 13)S4 + A4(J.lij r 22 + Aij r 23)C4 + J.l4(J.lij r 32 + Aij r 33) 

which thus yield a unique value of 05 for every value of 04 . Finally, with 
04 and 05 known, it is a simple matter to calculate 06 . This is done upon 
solving for Q6 from eq.(4.42a), i.e., 

and if the partitioning (4.12) of Qi is now recalled, a useful vector equation 
is derived, namely, 

( 4.45) 

where rl is the first column of R. Let w denote the product QIrl, Le., 

Hence, 
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in whieh Wi denotes the ith eomponent of w. Henee, C6 and 86 are deter
mined from the first two sealar equations of eq. (4.45), namely, 

C6 = WIC5 + W2 8 5 

86 = -WIA585 + W2 A 5C5 + W3/l5 

thereby deriving a unique value of 86 for every pair of values (84,85 ). In 
summary, then, two values of 84 have been determined, eaeh value deter
mining, in turn, one single eorresponding set of 85 and 86 values. Therefore, 
there are two sets of solutions for the orientation problem under study, 
whieh lead to two eorresponding wrist postures. The two distinct postures 
of an orthogonal three-revolute spherieal wrist for a given orientation of its 
EE are displayed in Fig. 4.18. 

When eombined with the four postures of a deeoupled manipulator lead
ing to one and the same loeation of its wrist eenter-positioning problem-a 
maximum of eight possible eombinations of joint angles for a single pose of 
the end-effector of a deeoupled manipulator are found. 

4.5 Velo city Analysis of Serial Manipulators 

The relationships between the preseribed twist of the EE, also referred to as 
the Carte8ian velocity of the manipulator, and the eorresponding joint-rates 
are derived in this section. First, aserial n-axis manipulator eontaining 
only revolute pairs is eonsidered. Then, relations assoeiated with prismatie 
pairs are introdueed, and finally, the joint rates of six-axis manipulators 
are ealculated in terms of the EE twist. Partieular attention is given to 
deeoupled manipulators, for whieh simplified velo city relations are derived. 

We consider here the manipulator ofFig. 4.19, in which ajoint co ordinate 
8i , a joint rate ei , and a unit veetor ei are assoeiated with eaeh revolute 

(a) (b) 

FIGURE 4.18. The two configurations of a three-axis spherical wrist. 
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a 
p 

p 

FIGURE 4.19. General n-axis manipulator. 

axis. The Xi, Yi, Zi co ordinate frame, attached to the (i - 1 )st link, is not 
shown, hut its origin Gi is indicated. The relations that follow are apparent 
from that figure. 

Wo = 0 

WI = 01 e I 

W2 = 01e1 + ihe2 

and if the angular velo city of the EE is denoted hy w, then 

n 

W == Wn = 01 e1 + 02e2 + ... + Onen = L Oiei 
I 

Likewise, from Fig. 4.19, one readily derives 

(4.46) 

(4.47) 

where p denotes the position vector of point P of the EE. Upon differenti
ating hoth sides of eq.(4.47), we have 

(4.48) 

where 

(4.49) 
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Furthermore, substitution of eqs.(4.46) and (4.49) into eq.(4.48) yields 

p = BleI x al + (BleI + B2e2) x a2 + 

(4.50) 

which can be readily rearranged as 

p = BleI x (al + a2 + ... + an) 

+B2e2 x (a2 + a3 + ... + an) + 

Now vector ri is defined as that joining Oi with P, directed from the 
former to the latter, i.e., 

and hence, p can be rewritten as 

n 

p = LBiei x ri 
I 

Further, let A and B denote the 3 x n matrices defined as 

A == [ el e2 . . . en 1 
B == [eI x rl e2 x r2 . .. en x r n 1 

Furthermore, the n-dimensional joint-rate vector iJ is defined as 

Thus, wand p can be expressed in a more compact form as 

w = AiJ, p = BiJ 

the twist of the EE being defined, in turn, as 

t == [;] 

The EE twist is thus related to the joint-rate vector iJ in the form 

(4.51) 

(4.52a) 

(4.52b) 

(4.53) 

(4.54) 
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where J is the Jacobian matrix, or Jacobian, for brevity, of the manipulator 
under study, first introduced by Whitney (1972). The Jacobian is defined 
as the 6 x n matrix shown below: 

(4.55a) 

or 

(4.55b) 

Clearly, an alternative definition of the foregoing Jacobian matrix can be 
given as 

J = ä~ 
ä6 

Moreover, if ji denotes the ith column of J, one has 

It is important to note that if the axis of the ith revolute is denoted by 
ni , then ji is nothing but the Plücker array of that line, with the moment 
of ni being taken with respect to the operation point P of the EE. 

On the other hand, if the ith pair is not rotational, but prismatic, then the 
(i - 1 )st and the ith links have the same angular velocity, for a prismatic 
pair does not allow any relative rotation. However, vector ai joining the 
origins of the ith and (i + 1 )st frames is no longer of constant magnitude 
but undergoes a change of magnitude along the axis of the prismatic pair. 
That is, 

One can readily prove, in this case, that 

w = e1el + e2e2 + ... + ei- 1 ei-l + ei+lei+l + ... + enen 

p = e1el x fl + e2e2 x f2 + ... + ei-1ei-l x fi-l + biei 

+ei+lei+l x fi+l + ... + enen x an 

from which it is apparent that the relation between the twist of the EE and 
the joint-rate vector is formally identical to that appearing in eq.(4.54) if 
vector iJ is defined as 

and the ith column of J changes to 

( 4.57) 
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Note that the Plücker array of the axis of the ith joint, if prismatic, is that 
of a line at infinity lying in a plane normal to the unit vector ei, as defined 
in eq.(3.35). 

In particular, for six-axis manipulators, J is a 6 x 6 matrix. Whenever 
this matrix is nonsingular, eq.(4.54) can be solved for 8, namely, 

(4.58) 

Equation (4.58) is only symbolic, for the inverse of the Jacobian matrix 
need not be computed explicitly. Indeed, in the general case, matrix J can
not be inverted symbolically, and hence, 8 is computed using a numerical 
procedure, the most suitable one being the Gauss-elimination algorithm, 
also known as LU decomposition (Golub and Van Loan, 1989). Gaussian 
elimination pro duces the solution by recognizing that a system of linear 
equations is most easily solved when it is in either upper- or lower-triangular 
form. To exploit this fact, matrix J is factored into the unique Land V 
factors in the form: 

J=LV (4.59a) 

where L is lower- and V is upper-triangular. Moreover, they have the forms 

[ l~, 
0 

fl 
1 

L= 

lnI ln2 

(4.59b) 

U~ [T 
UI2 

U'n 1 U22 U2n 

0 Unn 

(4.59c) 

where in the particular case at hand, n = 6. Thus, the unknown vector of 
joint rates can now be computed from two triangular systems, namely, 

Ly = t, V8 = y ( 4.60) 

The latter equations are then solved, first for y and then for 8, by appli
cation of only forward and backward substitutions, respectively. The LU 
decomposition of an n x n matrix requires M~ multiplications and A~ 
additions, whereas the forward substitution needed in solving the lower
triangular system of eq.( 4.60) requires M~ multiplications and A~ addi
tions. Moreover, the backward substitution needed in solving the upper
triangular system of eq. (4.60) requires M~' multiplications and A~' addi
tions. These figures are (Dahlquist and Björck, 1974) 

n3 n 
A' = - -

n 3 3 (4.61a) 
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M" = n(n - 1) 
n 2' 

A" = n(n-1) 
n 2 (4.61b) 

M'" = n(n + 1) 
n 2' 

A'" = n(n - 1) 
n 2 (4.61c) 

Thus, the solution of a system of n linear equations in n unknowns, using 
the LU-decomposition method, can be accomplished with Mn multiplica
tions and An additions, as given below (Dahlquist and Björck, 1974): 

Mn = ~(2n2 + 9n + 1), (4.62a) 

Hence, the velo city resolution of a six-axis manipulator of arbitrary ar
chitecture requires M6 multiplications and A 6 additions, as given below: 

(4.62b) 

Decoupled manipulators allow an even simpler velo city resolution. For 
manipulators with this type of architecture, it is more convenient to deal 
with the velocity of the center C of the wrist than with that of the operation 
point P. Thus, one has 

tc = JiJ 

where tc is defined as 

tc = [~] 
and can be obtained from tp == [wT, pTjT using the twist-transfer formula 
given by eqs.(3.84) and (3.85) as 

with C and P defined as the cross-product matrices of the position vectors 
p and c, respectively. 

If in general, JAdenotes the Jacobian defined for a point A of the EE 
and J B that defined for another point B, then the relation between JA and 
J B is 

(4.63a) 

where the 6 x 6 matrix U is defined as 

(4.63b) 

while A and Bare now the cross-product matrices of the position vectors a 
and b of points A and B, respectively. Moreover, this matrix U is identical 
to the matrix defined under the same name in eq.(3.31), and hence, it 



www.manaraa.com

4.5 Velocity Analysis of Serial Manipulators 145 

belongs to the 6 x 6 unimodular group, i.e., the group of 6 x 6 matrices 
whose determinant is unity. Thus, 

(4.64) 

We have then proven the result below: 

Theorem 4.5.1 The determinant of the Jacobian matrix of a six-axis ma
nipulator is not affected under a change of operation point of the EE. 

Note, however, that the Jacobian matrix itself changes under a change 
of operation point. By analogy with the twist- and the wrench-transfer 
formulas, eq.(4.63a) can be called the Jacobian-transfer formula. 

Since C is on the last three joint axes, its velocity is not affected by the 
motion of the last three joints, and we can write 

c = ih el x rl + ihe2 x r2 + B3e3 x r3 

where in the case of a decoupled manipulator, vector ri is defined as that 
directed from Gi to C. On the other hand, we have 

w = BleI + B2e2 + B3e3 + B4e4 + B5e5 + B6e6 

and thus, the Jacobian takes on the following simple form 

J = [~~~ J~2] (4.65) 

where 0 denotes the 3 x 3 zero matrix, the other 3 x 3 blocks being given 
below, for manipulators with revolute pairs only, as 

J ll = [eI e2 e3] 

J l2 = [e4 e5 e6] 

J 21 = [eI x rl e2 x r2 e3 x r3] 

Further, vector iJ is partitioned accordingly: 

where 

(4.66a) 

(4.66b) 

(4.66c) 

Henceforth, the three components of iJ a will be referred to as the arm rates, 
whereas those of iJw will be called the wrist rates. Now eqs.(4.54) can be 
written, for this particular case, as 

JlliJa + J l2 iJw = w 

J 2l iJa = C 

(4.67a) 

(4.67b) 
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from which the solution is derived successively from the two systems of 
three equations and three unknowns that follow: 

J 21 0a = C 

J 120w = W - J llOa 

(4.68a) 

(4.68b) 

From the general expressions (4.61), then, it is apparent that each of 
the foregoing systems can be solved with the numbers of operations shown 
below: 

M3 = 23, A3 = 14 

Since the computation of the right-hand side of eq.(4.68b) requires, ad
ditionally, nine multiplications and ni ne additions, the total numbers of 
operations required to perform one joint-rate resolution of a decoupled 
manipulator, Mv multiplications and Av additions, are given by 

Mv = 55, Av = 37 (4.69) 

which are fairly low figures and can be performed in a matter of microsec
onds using a modern processor. 

It is apparent from the foregoing kinematic relations that eq.(4.68a) 
should be first solved for Oa; with this value available, eq.(4.68b) can then 
be solved for Ow. We thus have, symbolically, 

(). J- 1 . 
a = 21 C 

. -1 . 
(Jw = J 12 (w - J 11 (Ja) 

(4.70) 

(4.71) 

Now, if we recall the concept of reciprocal bases introduced in Subsee
tion 2.7.1, the above inverses can be represented explicitly. Indeed, let 

Then 

Therefore, 

ß21 == det(J21 ) = (e1 x rt) x (e2 x r2) . (e3 x r3) 

ß 12 == det(J 12 ) = e4 x e5· e6 

. 1 
()a= -

ß21 

(4.72) 

(4.73) 

(4.74) 

(4.75) 

(4.76a) 
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and if we let 
(4.76b) 

where w is read varpi, then 

[
es x e6· W] 
e6 x e4· W 

e4 x es· w 
(4.76c) 

4.5.1 J acobian Evaluation 

The evaluation of the Jacobian matrix of a manipulator with n revolutes 
is discussed in this subsection, the presence of a prismatic pair leading 
to simplifications that will be outlined. Our aim here is to devise algo
rithms requiring a minimum number of operations, for these calculations 
are needed in real-time applications. We assume at the outset that all joint 
variables producing the desired EE pose are available. We divide this sub
section into two subsubsections, one for the evaluation of the upper part of 
the Jacobian matrix and one for the evaluation of its lower part. 

Evaluation of Submatrix A 

The upper part A of the Jacobian matrix is composed of the set { ei }f, and 
hence, our aim he re is the calculation of these unit vectors. Note, moreover, 
that vector [ ei)l is not hing but the last column of P i-I =' Q 1 ... Qi-l, our 
task then being the calculation of these matrix products. According to the 
DH nomenclature, 

Hence, [eI h is available at no cost. However, each of the remaining [ei h 
vectors, for i = 2, ... , n, is obtained as the last column of matrices Pi-I. 
The recursive calculation of these matrices is described below: 

PI =' Ql 

P 2 =,P1 Q2 

and hence, a simple algorithm follows: 

PI +- Ql 

For i = 2 to n do 

Pi +- P i- 1 Qi 

enddo 
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Now, since PI is identical to Q1, the first product appearing in the do
loop, P 1Q2, is identical to Q1Q2, whose two factors have a special struc
ture. The computation of this product, then, requires special treatment, 
which warrants furt her discussion because of its particular features. From 
the structure of matrices Qi, as displayed in eq.(4.1d), we have 

-)'1 sin 81 Jl1 sin 81 ] [COS 82 ->'2 sin 82 Jl2 sin 82 ] 
>'lcos81 -Jl1cos81 sin82 >'2cos82 -Jl2cos 82 

Jl1 >'1 0 Jl2 >'2 

The foregoing product is calculated now by first computing the prod
ucts >'1>'2, >'lJl2, Jl1Jl2, and >'2Jl1, which involve only constant quantities, 
these terms thus being posture-independent. Thus, in tracking a prescribed 
Cartesian trajectory, the manipulator posture changes continuously, and 
hence, its joint variables also change. However, its DH parameters, those 
defining its architecture, remain constant. Therefore, the four above prod
ucts remain constant and are computed prior to tracking a trajectory, i.e., 
off-line. In computing these products, we store them as 

>'12 == >'1>'2, Jl21 == >'lJl2, Jl12 == Jl1Jl2, >'21 == >'2Jl1 

Next, we perform the on-line computations. First, let1 

a f-- >'1 sin 82 

T f-- sin81 cos82 

v f-- COS 81 COS 82 

U f-- cos (h sin {}2 + >'1 T 

V f-- sin 81 sin 82 - >'1 V 

and hence, 

[
V - a sin 81 - >'2U + >'12 sin 81 Jl2U + Jl12 sin 81 ] 

P 2 = T + a cos 81 ->'2V - >'12 COS 81 Jl2V - Jl12 COS 81 
Jl1 sin 82 >'21 COS 82 + Jl21 -Jl12 COS 82 + >'12 

As the reader can verify, the foregoing calculations consume 20 multiplica
tions and 10 additions. Now, we proceed to compute the remaining products 
in the foregoing do-Ioop. 

Here, notice that the product P i- 1 Qi, far 3 ::; i ::; n, can be computed 
recursively, as described below: Let P i- 1 and Pi be given as 

P i - 1 == [~~~ ~~~ ~~:] 
P31 P32 P33 

1 Although v and v look similar, they should not be confused with each other, 
the former being the lowercase Greek letter upsilon. As a matter of fact, no 
confusion should arise, because upsilon is used only once, and does not appear 
furt her in the book. 
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Now matrix Pi is eomputed by first defining 

and 

Ui = Pu sin ()i - PI2 eos ()i 

Vi = P2I sin ()i - P22 eos ()i 

Wi = P3I sin ()i - P32 eos ()i 

P~I = Pu eos ()i + PI2 sin ()i 

P~2 = -UiAi + P13JLi 

P~3 = UiJLi + PI3 Ai 

P~I = P2I eos ()i + P22 sin ()i 

P~2 = -ViAi + P23JLi 

P~3 = ViJLi + P23 A i 

P~I = P3I eos ()i + P32 sin ()i 

P~2 = -WiAi + P33JLi 

P~3 = WiJLi + P33 Ai 

(4.78a) 

(4.78b) 

Computing Ui, Vi, and Wi requires six multiplieations and three addi
tions, whereas each of the P~j entries requires two multiplieations and one 
addition. Henee, the eomputation of each Pi matrix requires 24 multipliea
tions and 12 additions, the total number of operations required to eompute 
the n - 1 produets { P i }~-I thus being 24( n - 2) + 20 = 24n - 28 multi pli
eations and 12(n - 2) + 10 = 12n - 14 additions, for n ~ 2. Moreover, PI, 
Le., QI, requires four multiplieations and no additions, the total number of 
multiplieations M A and additions AA required to eompute matrix A thus 
being 

MA = 24n - 24, AA = 12n - 14 (4.79) 

Before eonduding this section, aremark is in order: The reader may 
realize that P n is nothing but Q, and henee, the same reader may wonder 
whether we eould not save some operations in the foregoing eomputations 
by stopping the above reeursive algorithm at n-1, rat her than at n. This is 
not a good idea, for the above equality holds if and only if the manipulator 
is eapable of traeking perfectly a given trajeetory. However, reality is quite 
different, and errors are always present when tracking. As a matter of fact, 
the mismateh between P n and Q is very useful in estimating orientation 
errors, which are then used in a feedback-control scheme to synthesize the 
eorrective signals that are meant to eorrect those errors. 
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Evaluation of Submatrix B 

The computation of submatrix B of the Jacobian is studied here. This 
submatrix comprises the set of vectors {ei x ri H'. We thus proceed first 
to the computation of vectors ri, for i = 1, ... ,n, which is most efficiently 
done using a recursive scheme, similar to that of Horner for polynomial 
evaluation (Henrici, 1964), namely, 

[r6l6 f- [a6l6 

For i = 5 to 1 do 

[rdi f- radi + Qi[ri+di+l 
enddo 

In the foregoing algorithm, a simple scheme is introduced to perform the 
product Qd ri+lli+l, in order to economize operations: Ifwe let [ri+lli+l = 
[Tl, T2, T3 V, then 

where 

-.Ai sin Bi 
.Ai cos Bi 

(4.80a) 

(4.80b) 

Therefore, the product of matrix Qi by an arbitrary vector consumes eight 
multiplications and four additions. 

Furthermore, each vector [ai li, for i = 1, ... ,n, requires 2 multiplications 
and no additions, as made apparent from their definitions in eq.(4.3b). 
Moreover, from the foregoing evaluation of Qd ri+lli+l, it is apparent that 
each vector ri, in frame F i , is computed with 10 multiplications and seven 
additions-two more multiplications are needed to calculate each vector 
[ ai li and three more additions are required to add the latter to vector 
Qd ri+lli+l-the whole set of vectors {ri }1 thus being computed, in F i -

coordinates, with lO(n - 1) + 2 = IOn - 8 multiplications and 7(n - 1) 
additions, where one coordinate transformation, that of rl, is not counted, 
since this vector is computed directly in F I . 

Now we turn to the transformation of the components of all the foregoing 
vectors into Fl-coordinates. First, note that we can proceed now in two 
ways: in the first, we transform the individual vectors ei and ri from F i - into 
Fl-coordinates and then compute their cross product; in the second, we first 
perform the cross products and then transform each of these products into 
Fl-coordinates. It is apparent that the second approach is more efficient, 
which is why we choose it here. 
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In order to calculate the products ei x ri in Fi-coordinates, we let [ri li = 
[p1, P2, P3V· Moreover, [edi = [0, 0, 1V, and hence, 

which is thus obtained at no cost. Now, the transformation from F i - into 
F 1-coordinates is simply 

( 4.81) 

In particular, [e1 x r1 h needs no transformation, for its two factors are 
given in F 1-coordinates. The F 1-components of the remaining cross prod
ucts are computed using the general transformation of eq.( 4.81). In the case 
at hand, this transformation requires, for each i, six multiplications and 
three additions, for this transformation involves the product of a fun 3 x 3 
matrix, Pi-1, by a 3-dimensional vector, ei x ri, whose third component 
vanishes. Thus, the computation of matrix B requires MB multiplications 
and AB additions, as given below: 

MB = 16n - 14, AB = lO(n - 1) (4.82) 

In total, then, the evaluation of the complete Jacobian requires M J 

multiplications and A J additions, namely, 

MJ = 40n - 38, A J = 22n - 24 (4.83) 

In particular, for a six-revolute manipulator, these figures are 202 mul
tiplications and 108 additions. 

Now, if the manipulator contains some prismatic pairs, the foregoing 
figures diminish correspondingly. Indeed, if the ith joint is prismatic, then 
the ith column of the Jacobian matrix changes as indicated in eq.(4.57). 
Hence, one cross-product calculation is spared, along with the associated 
coordinate transformation. As a matter of fact, as we saw above, the cross 
product is computed at no cost in local coordinates, and so each prismatic 
pair of the manipulator reduces the foregoing numbers of operations by 
only one coordinate transformation, i.e., by 10 multiplications and seven 
additions. 

4.5.2 Singularity Analysis of Decoupled Manipulators 

In performing the computation of the joint rates for a decoupled manipu
lator, it was assumed that neither J 12 nor J 21 was singular. If the latter is 
singular, then none of the joint rates can be evaluated, even if the former is 
nonsingular. However, if J 21 is nonsingular, then eq.(4.67a) can be solved 
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for the arm rates even if J 12 is singular. Each of these sub-Jacobians is 
analyzed for singularities below. 

We will start analyzing J 21 , whose singularity determines whether any 
joint-rate resolution is possible at all. First, we note from eq.(4.66c) that 
the columns of J 21 are the three vectors e1 x r1, e2 x r2, and e3 x r3. 

Hence, J 21 becomes singular if either these three vectors become coplanar 
or at least one of them vanishes. Furthermore, neither the relative layout 
of these three vectors nor their magnitudes change if the manipulator un
dergoes a motion ab out the first revolute axis while keeping the second 
and the third revolute axes locked. This means that (h does not affect the 
singularity of the manipulator, a result that can also be derived from in
variance arguments~see Section 2.6~and by noticing that singularity is, 
indeed, an invariant property. Hence, whether a configuration is singular or 
not is independent of the viewpoint of the observer, a change in (h being 
nothing but a change of viewpoint. 

The singularity of a three-revolute arm for positioning tasks was analyzed 
by Burdick (1995), by recognizing that i) given three arbitrary lines in 
space, the three revolute axes in our case, it is always possible to find a set 
of lines that intersects all three, and ii) the moments of the three lines about 
any point on the intersecting line are all zero. As a matter of fact, the locus 
of those lines is a quadric ruled surface, namely, a one-sheet hyperboloid~ 
see Exercise 3.4 of Appendix C. Therefore, if the endpoint of the third 
moving link lies in this quadric, the manipulator is in a singular post ure, 
and velocities of C along the intersecting line cannot be produced. This 
means that the manipulator has lost, to a first order, one degree of freedom. 
Here we emphasize that this loss is meaningful only at a first order because, 
in fact, a motion along that intersecting li ne is still possible, provided that 
the full nonlinear relations of eq.( 4.16) are considered. Even in this case, 
however, only a unidirectional motion is possible, i.e., in the direction in 
which the distance from C to the farthest axis decreases. Motions in the 
opposite direction are not feasible because of the rigidity of the links. 

We will illustrate the foregoing concepts as they pertain to the most 
common types of industrial manipulators, i.e., those of the orthogonal type. 
In these cases, two consecutive axes either intersect at right angles or are 
parallel; most of the time, the first two axes intersect at right angles and 
the last two are parallel. Below we study each of these cases separately. 

Case 1: Two consecutive axes intersect and C lies in their plane. 
Here, the ruled hyperboloid containing the lines that intersect all 
three axes degenerates into a plane, namely, that of the two inter
secting axes. For conciseness, let us assurne that the first two axes 
intersect, but the derivations are the same if the intersecting axes are 
the last two. Moreover, let 0 12 be the intersection of the first two 
axes, 1112 being the plane of these axes and n12 its normal. If we re
call the notation adopted in Section 4.5, we have now that the vector 
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direeted from 0 12 to C ean be regarded as both r1 and r2. Further
more, e1 x r1 and e2 x r2 (= e2 x r1) are both parallel to n12. Henee, 
the first two axes ean only produee velocities of C in the direetion of 
n12. As a eonsequenee, velocities of C in TI12 and perpendicular to 
e3 x r3 eannot be produeed in the presenee of this singularity. The 
set of infeasible velocities, then, lies in a line whose direction is the 
geometrie representation of the nullspaee of Jf1. Likewise, the manip
ulator ean withstand forees applied at C in the direetion of the same 
line purely by reaetion wrenehes, Le., without any motor torques. The 
last issue falls into the realm of manipulator statics, upon which we 
will elaborate in Seetion 4.7. 

We illustrate this singularity, termed here shoulder singularity, in a 
manipulator with the arehiteeture ofFig. 4.3, as postured in Fig. 4.20. 
In this figure, the line interseeting all three arm axes is not as obvious 
and needs furt her explanation. This line is indieated by C, in that 
figure, and is parallel to the last two axes. It is apparent that this 
line interseets the first axis at right angles at a point I. Now, if we 
take into aeeount that all parallel lines interseet at infinity, then it 
beeomes apparent that C, interseets the axis of the third revolute as 
well, and henee, C, interseets all three axes. 

FIGURE 4.20. Shoulder singularity of the Puma robot. 
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Case 2: Two consecutive axes are parallel and C lies in their plane, 
as shown in Fig. 4.21. For conciseness, again, we assurne that the 
parallel axes are now the last two, a rat her common case in com
mercial manipulators, but the derivat ions below are the same if the 
parallel axes are the first two. We now let II23 be the plane of the 
last two axes and n23 its normal. Furthermore, e3 = e2, r2 = r1, 

and e2 x r3 = a(e2 x r2), where a = b4/(a2 + b4) in terms of the 
Denavit-Hartenberg notation, thereby making apparent that the last 
two columns of J 21 are linearly dependent. Moreover, e2 x r2 and con
sequently, e3 x r3, are parallel to n23, the last two axes being capable 
of producing velocities of C only in the direction of n23. Hence, ve
locities of C in II23 that are normal to e1 x r1 cannot be produced in 
this configuration, and the manipulator loses, again, to a first-order 
approximation, one degree of freedom. The set of infeasible velo ci
ties, then, is parallel to the line .c of Fig. 4.21, whose direction is 
the geometrie representation of the nullspace of JI1. The singularity 
displayed in the foregoing figure, termed here the elbow singularity, 
pertains also to a manipulator with the architecture of Fig. 4.3. 

With regard to the wrist singularities, these were already studied when 
solving the orientation problem for the inverse kinematies of decoupled 
manipulators. Here, we study the same in light of the sub-Jacobian J 12 

of eq.(4.66b). This sub-Jacobian obviously vanishes when the wrist is so 
configured that its three revolute axes are coplanar, whieh thus leads to 

--------

----
:i 

FIGURE 4.21. Elbow singularity of the Puma robot. 



www.manaraa.com

4.5 Velo city Analysis of Serial Manipulators 155 

Note that when studying the orientation problem of decoupled manipu
lators, we found that orthogonal wrists are singular when the sixth and 
fourth axes are aligned, in full agreement with the foregoing condition. In
deed, if these two axes are aligned, then e4 = -e6, and the above equation 
holds. 

4.5.3 Manipulator Workspace 

The workspace of spherical wrists for orientation tasks was discussed in 
Subsection 4.4.2. Here we focus on the workspaces of three-axis positioning 
manipulators in light of their singularities. 

In order to gain insight into the problem, we study first the workspace of 
manipulators with the architecture of Fig. 4.3. Figures 4.20 and 4.21 show 
such a manipulator with point C at the limit of its positioning capabilities 
in one direction, Le., at the boundary of its workspace. Moreover, with re
gard to the posture of Fig. 4.20, it is apparent that the first singularity is 
preserved if (i) point C moves on a line parallel to the first axis and inter
secting the second axis; and (ii) with the second and third joints locked, 
the first joint goes through a full turn. Under the second motion, the line 
of the first motion sweeps a circular cylinder whose axis is the first manip
ulator axis and with radius equal to b3 , the shoulder offset. This cylinder 
constitutes apart of the workspace boundary, the other part consisting of 
a toroidal surface. Indeed, the second singularity is preserved if (i) with 
point C in the plane of the second and third axes, the second joint makes 
a full turn, thereby tracing a circle with center on C2 , a distance b3 from 
the first axis, and radius a2 + b4 ; and (ii) with point C still in the plane 
of the second and third joints, the first joint makes a full turn. Under the 
second motion, the circle generated by the first motion describes a toroid 
whose major axis is the first manipulator axis. Moreover, since the circle 
generating the toroid lies in a plane outside this axis, the cross section of 
the toroid is an ellipse of semiaxes a2 + b4 and Jb~ + (a2 + b4 )2 - b3 , as 
shown in Fig. 4.22. 

The determination of the workspace boundaries of more general manip
ulators requires, obviously, more general approaches, like that proposed by 
Ceccarelli (1996). By means of an alternative approach, Ranjbaran, Ange
les, and Patel (1992) found the workspace boundary with the aid of the 
general characteristic equation of a three-revolute manipulator. This equa
tion is a quartic polynomial, as displayed in eq.( 4.25). From the discussion 
of Subsection 4.4.1, it is apparent that at singularities, two distinct roots 
of the IKP merge into a single one. This happens at points where the plot 
of the characteristic polynomial of eq. (4.25) is tangent to the 73 axis, which 
occurs in turn at points where the derivative of this polynomial with re
spect to 73 vanishes. The condition for ()3 to correspond to a point C on 
the boundary of the workspace is, then, that both the characteristic poly
nomial and its derivative with respect to 73 vanish concurrently. These two 
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(b) 
(a) 

x 

(c) 

FIGURE 4.22. Workspace of a Puma manipulator (a) top view; (b) side view; 
( c) perspective. 

polynomials are displayed below: 

P( r3) == Rri + Sr~ + Tri + U r3 + V = 0 

P'(r3) == 4Rrr + 3Sri + 2Tr3 + U = 0 

(4.84a) 

(4.84b) 

with coefficients R, S, T, U, and V defined in eqs.(4.26a-e). From these 
equations and eqs.(4.19d-f) and (4.20d-f), it is apparent that the foregoing 
coefficients are solely functions of the manipulator architecture and the 
Cartesian coordinates of point C. Moreover, from the same equations, it 
is clear that the above coefficients are all quadratic in p2 == x~ + y~ and 
quartic in Zc. Thus, since the Cartesian coordinates Xc and Yc do not 
appear in the foregoing coefficients explicitly, the workspace is symmetrie 
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about the Zl axis, a result to be expected by virtue of the independence 
of singularities from angle (h. Hence, the workspace boundary is given 
by a function f(p2, zc) = 0 that can be derived by eliminating 1'3 from 
eqs. (4.84a & b). This can be readily done by resorting to any elimination 
procedure, the simplest one being dialytic elimination, as discussed below. 

In order to eliminate 1'3 from the above two equations, we proceed in 
two steps: In the first step, six additional polynomial equations are derived 
from eqs. (4.84a & b) by multiplying the two sides of each of these equations 
by 1'3, Tl, and Tl, thereby obtaining a total of eight polynomial equations 
in 1'3, namely, 

RTI + STf + TTf + UTi + VTl = 0 

4RTf + 3STf + 2TTi + UTl = 0 

RTf + STf + TTi + U Tl + V 1'; = 0 

4RTf + 3STi + 2TTl + UT; = 0 

RTf + STi + TTl + U 1'; + V 1'3 = 0 

4RTi + 3sTl + 2TT; + UT3 = 0 

RTi + STl + TT; + U 1'3 + V = 0 

4RTl + 3ST; + 2TT3 + U = 0 

In the second elimination step we write the above eight equations in linear 
homogeneous form, namely, 

(4.85a) 

with the 8 x 8 matrix M and the 8-dimensional vector T3 defined as 

R S T U V 0 0 0 1'7 
3 

0 4R 3S 2T U 0 0 0 1'6 
3 

0 R S T U V 0 0 1'5 
3 

0 0 4R 3S 2T U 0 0 7A 
(4.85b) M== T3 = 3 

0 0 R S T U V 0 1'3 
3 

0 0 0 4R 3S 2T U 0 1'2 
3 

0 0 0 R S T U V 1'3 
0 0 0 0 4R 3S 2T U 1 

It is now apparent that any feasible solution of eq.(4.85a) must be nontriv
ial, and hence, M must be singular. The desired boundary equation is then 
derived from the singularity condition on M, Le., 

f(p2, zc) == det(M) = 0 (4.86) 

Note that all entries of matrix M are linear in the coefficients R, S, ... , 
V, which are, in turn, quadratic in p2 and quartic in zc. Therefore, the 
workspace boundary is a surface of 16th degree in p2 and of 32nd degree 
in zc. 
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Regions Number of Solulions 

Two Solutions 

Four Solutions 

~~~~ 

FIGURE 4.23. The workspace of the manipulator of Figs. 4.17-19. 

We used the foregoing procedure, with the help of symbolic computa
tions, to obtain a rendering of the workspace boundary of the manipulator 
of Figs. 4.13-4.15, the workspace thus obtained being displayed in Fig. 4.23. 

4.6 Acceleration Analysis of Serial Manipulators 

The subject of this section is the computation of vector 9 of second joint
variable derivatives, also called the joint accelerations. This vector is com
puted from Cartesian position, velocity, and acceleration data. To this end, 
both si des of eq.( 4.54) are differentiated with respect to time, thus obtaining 

( 4.87) 

and hence, 
(4.88) 

From eq. (4.87), it is clear that the joint-acceleration vector is computed in 
exactly the same way as the joint-rate vector. In fact, the LU decomposition 
of J is the same in this case and hence, need not be recomputed. All that is 
needed is the solution of a lower- and an upper-triangular system, namely, 

The two foregoing systems are solved first for z and then for 9 by forward 
and backward substitution, respectively. The first of the foregoing systems 
is solved with M:: multiplications and A~ additions; the second with M::' 
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multiplications and A~' additions. These figures appear in eqs.( 4.63b & c). 
Thus, the total numbers of multiplications, Mt, and additions, At, that the 
forward and backward solutions of the aforementioned systems require are 

(4.89) 

In eq.(4.87), the right-hand side comprises two terms, the first being the 
specified time-rate of change of the twist of the EE, or twist-rate, for brevity, 
which is readily available. The second term is not available and must be 
computed. This term involves the product of the time-derivative of J times 
the previously computed joint-rate vector. Hence, in order to evaluate the 
right-hand side of that equation, all that is further required is j. From 
eq.(4.55a), one has 

where, from eqs.(4.52a & b), 

A = [eI e2 

B = [UI U2 

and Ui denotes ei x ri, for i = 1,2, ... , n. Moreover, 

el = Wo x el = 0 

ei = Wi-I x ei == Wi x ei, i = 2,3, ... , n 

and 

(4.90a) 

(4.90b) 

( 4.91a) 

(4.91b) 

(4.91c) 

Next, an expression for ri is derived by time-differentiating both sides of 
eq.(4.51), which pro duces 

Recalling eq.( 4.49), the above equation reduces to 

( 4.92) 

Substitution of eqs.(4.91) and (4.92) into eqs.(4.90a & b) leads to 

A = [0 WI x e2 ... Wn-I X en J 

B = [eI x rl WI2 x r2 + e2 x r2 

with rk and Wk,k+l defined as 

n 

rk == LWi x ai, k = 1, ... ,n 

k 

Wk,k+I==Wkxek+l, k=1, ... ,n-1 

(4.93a) 

(4.93b) 
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The foregoing express ions are invariant and hence, valid in any coordinate 
frame. However, they are going to be incorporated into matrix j, and then 
the latter is to be multiplied by vector 8, as indicated in eq.(4.87). Thus, 
eventually all columns of both Ä and B will have to be represented in the 
same co ordinate frame. Hence, coordinate transformations will have to be 
introduced in the foregoing matrix columns in order to have all of these 
represented in the same coordinate frame, say, the first one. We then have 
the expansion below: 

(4.94) 

The right-hand side of eq.(4.94) is computed recursively as described below 
in five steps, the number of operations required being included at the end 
of each step. 

1. Compute {[ Wdi}I: 

[wdl f- 8l [edl 
For i = 1 to n - 1 do 

enddo 

2. Compute {[ eddl: 
[edl f- lOh 
For i = 2 to n do 

enddo 

3. Compute {[rdi }l: 

[rnln f- [wn x anln 
For i = n - 1 to 1 do 

enddo 

8(n - 1) M & 5(n - 1) A 

OM&OA 

(14n - 8)M & (lOn - 7)A 

4. Compute {[ Ui li}I using the expression appearing in eq.(4.91c): 

[udl f- [el x rl h For i = 2 to n do 

enddo 4(n - 1) M & 3(n - 1) A 



www.manaraa.com

4.6 Acceleration Analysis of Serial Manipulators 161 

5. Compute jiJ: 

Let v == jiJ, which is a 6-dimensional vector. A co ordinate trans
formation of its two 3-dimensional vector components will be imple
mented using the 6 x 6 matrices U i , which are defined as 

_ [Qi 0] 
U i = 0 Qi 

where 0 stands for the 3 x 3 zero matrix. Thus, the foregoing 6 x 6 ma
trices are block-diagonal, their diagonal blocks being simply matrices 
Qi' One then has the algorithm below: 

[v]n ;- On [!:L 
For i = n - 1 to 1 do 

enddo 

jiJ;- [vh 19(n - 1) + 3 M & 12(n - 1) A 

thereby completing the computation of jiJ. 

The figures given above for the floating-point operations involved were 
obtained based on a few facts, namely, 

1. It is recalled that [edi = [0, 0, l]T. Moreover, if we let [W]i = 
[wx , wy , W z V be an arbitrary 3-dimensional vector, then 

and hence, this product requires zero multiplications and zero addi
tions. 

2. [edi' computed as in eq.(4.91b), takes on the form [wy , -wx , O]T, 
where W x and wy are the Xi and Yi components of Wi. Moreover, let 
[ r d i = [x, y, z V. Then 

and this product is computed with four multiplications and one ad
dition. 
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3. As found in Subsection 4.5.1, any coordinate transformation from F i 

to F H1 , or vice versa, of any 3-dimensional vector is computed with 
eight multiplications and four additions. 

Thus, the total numbers of multiplications and additions required to 
compute jiJ in frame F1, denoted by MJ and AJ , respectively, are as 
shown below: 

M J = 45n - 36, A J = 30n - 27 

Since the right-hand side of eq.(4.87) involves the algebraic sum of two 
6-dimensional vectors, then, the total numbers of multiplications and ad
ditions needed to compute the aforementioned right-hand side, denoted by 
Mr and Ar, are 

Mr = 45n - 36, Ar = 30n - 21 

These figures yield 234 multiplications and 159 additions for a six-revolute 
manipulator of arbitrary architecture. Finally, if the latter figures are added 
to those of eq.(4.89), one obtains the numbers of multiplications and addi
tions required for an acceleration resolution of a six-revolute manipulator 
of arbitrary architecture as 

M a = 270, Aa = 189 

Furthermore, for six-axis, decoupled manipulators, the operation counts 
of steps 1 and 2 above do not change. However, step 3 is reduced by 42 mul
tiplications and 30 additions, whereas step 4 by 12 multiplications and 9 ad
ditions. Moreover, step 5 is reduced by 57 multiplications and 36 additions. 
With regard to the solution of eq.( 4.87) for 8, an additional reduction of 
floating-point operations, or flops, is obtained, for now we need only 18 mul
tiplications and 12 additions to solve two systems of three equations with 
three unknowns, thereby saving 18 multiplications and 18 additions. Thus, 
the corresponding figures for such a manipulator, M~ and A~, respectively, 
are 

M~ = 141, A~ = 96 

4.7 Static Analysis of Serial Manipulators 

In this section, the static analysis of aserial n-axis manipulator is under
taken, particular attention being given to six-axis, decoupled manipulators. 
Let Ti be the torque acting at the ith revolute or the force acting at the ith 
prismatic pair. Moreover, let T be the n-dimensional vector of joint forces 
and torques, whose ith component is Ti, whereas w = [nT, fT]T denotes 
the wrench acting on the EE, with n denoting the resultant moment and f 
the resultant force applied at point P of the end-effector of the manipulator 
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of Fig. 4.19. Then the power exerted on the manipulator by all forces and 
moments acting on the end-effector is 

IIE = wTt = llT W + fT P 

whereas the power exerted on the manipulator by all joint motors, IIJ, is 

(4.95) 

Under static, conservative conditions, there is neither power dissipation 
nor change in the kinetic energy of the manipulator, and hence, the two 
foregoing powers are equal, which is just arestatement of the First Law of 
Thermodynamics or equivalently, the Principle of Virtual Work, i.e., 

wTt = TTiJ (4.96a) 

Upon substitution of eq.(4.54) into eq.(4.96a), we obtain 

(4.96b) 

which is a relation valid for arbitrary iJ. Under these conditions, if J is not 
singular, eq.(4.96b) leads to 

(4.97) 

This equation relates the wrench acting on the EE with the joint forces and 
torques exerted by the actuators. Therefore, this equation finds applications 
in the sensing of the wrench w acting on the EE by means of torque sensors 
located at the revolute axes. These sensors measure the motor-supplied 
torques via the current flowing through the motor armatures, the sensor 
readouts being the joint torques-or forces, in the case of prismatic joints
{ Tk }I, grouped into vector T. 

For a six-axis manipulator, in the absence of singularities, the foregoing 
equation can be readily solved for w in the form 

w = J-TT 

where J-T stands for the inverse of JT. Thus, using the figures recorded 
in eq.(4.62b), w can be computed from eq.(4.97) with 127 multiplications 
and 100 additions for a manipulator of arbitrary architecture. However, 
if the manipulator is of the decoupled type, the Jacobian takes on the 
form appearing in eq.( 4.65), and hence, the foregoing computation can be 
performed in two steps, namely, 

Jf2 llW = T w 

Jr1f = Ta - Jf1llw 

where llw is the resultant moment acting on the end-effector when f is 
applied at the center of the wrist, while T has been partitioned as 
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with Ta and T w defined as the wrist- and the arm torques, respectively. 
These two veetors are given, in turn, as 

Henee, the foregoing ealculations, as pertaining to a six-axis, deeoupled 
manipulator, are performed with 55 multiplieations and 37 additions, whieh 
follows from a result that was derived in Seetion 4.5 and is summarized in 
eq.(4.69). 

In solving for the wreneh aeting on the EE from the above relations, the 
wrist equilibrium equation is first solved for n w , thus obtaining 

J - T n w = 12 T w (4.98) 

where Jjl' stands for the inverse of Jf2' and is available in eq.(4.75). 
Therefore, 

1 
n w = ~ [(e5 x e6) (e6 x e4) (e4 x e5)]Tw 

Llo21 

1 
= ~[T4(e5 x e6) + T5(e6 x e4) + T6(e4 x e5)] 

Llo21 

Now, if we let 

we have, from eq.(4.74), 

where 
Ui == ei x ri 

or 

4.8 Planar Manipulators 

(4.99) 

(4.100) 

(4.101) 

Shown in Fig. 4.24 is a three-axis planar manipulator. Note that in this 
ease, the DH parameters bi and (ti vanish, for i = 1,2,3, the nonvanishing 
parameters ai being indieated in the same figure. Below we proeeed with the 
displaeement, velo city, aeeeleration, and statie analyses ofthis manipulator. 
Here, we reeall a few relations of planar meehanies that will be found useful 
in the diseussion below. 
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A 2 X 2 matrix A can be partitioned either columnwise or rowwise, as 
shown below: 

A == [a b 1 == [~~] 
where a, b, c, and d are all 2-dimensional column vectors. Furthermore, 
let E be defined as an orthogonal matrix rotating 2-dimensional vectors 
through an angle of 90° counterclockwise. Hence, 

[0 -1] 
E == 1 0 

We thus have 

Fact 4.8.1 

and hence, 

Fact 4.8.2 

where 1 is the 2 x 2 identity matrix. 

Moreover, 

Fact 4.8.3 

and 

Fact 4.8.4 

det(A) = -aTEb = bTEa 

= -cTEd = dTEc 

A-1 __ 1_ [ bT ] E 
- det(A) -aT 

1 
= det(A) E [-d cl 

4.8.1 Displacement Analysis 

(4.102) 

The inverse kinematics of the manipulator at hand now consists of deter
mining the values of angles Bi, for i = 1,2,3, that will place the end-effector 
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FIGURE 4.24. Three-axis planar manipulator. 

so that its operation point P will be positioned at the prescribed Carte
sian coordinates x, y and be oriented at a given angle cp with the X axis 
of Fig. 4.24. Note that this manipulator can be considered as decoupled, 
for the end-effector can be placed at the desired pose by first positioning 
point 0 3 with the aid of the first two joints and then orienting it with the 
third joint only. We then solve for the joint angles in two steps, one for 
positioning and one for orienting. 

We now have, from the geometry of Fig. 4.24, 

a1Cl + a2c12 = x 

a1 8 1 + a2 8 12 = Y 

where x and y denote the Cartesian coordinates of point 03, while C12 and 
812 stand for cos(81 +(2 ) and sin(81 +(2 ), respectively. We have thus derived 
two equations for the two unknown angles, from which we can determine 
these angles in various ways. For example, we can solve the problem using 
a semigraphical approach similar to that of Subsection 8.2.1. Indeed, from 
the two foregoing equations we can eliminate both C12 and 812 by solving 
for the second terms of the left-hand sides of those equations, namely, 

a2C12 = x - a1c1 

a2812 = Y - a1 8 1 

(4.103a) 

(4.103b) 
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If both sides of the above two equations are now squared, then added, and 
the ensuing sum is equated to a~, we obtain, after simplifieation, a linear 
equation in Cl and SI that represents a line .c in the Cl-SI plane: 

.c: (4.104) 

Clearly, the two foregoing variables are eonstrained by a quadratie equation 
defining a circle C in the same plane: 

C: c~ + s~ = 1 

which is a circle C of unit radius eentered at the origin of the aforementioned 
plane. The real roots of interest are then obtained as the interseetions of 
.c and C. Thus, the problem ean admit (i) two real and distinet roots, if 
the line and the eircle interseet; (ii) one repeated root if the line is tangent 
to the circle; and (iii) no real root if the line does not interseet the circle. 
The two real roots eonstitute the so-ealled elbow-up and elbow-down arm 
postures, depicted in Fig. 4.25. The same result eould have been obtained 
if we had transformed eq.(4.104) into a quadratie equation by resorting 
to the usual identities relating the eosine and the sine functions with the 
tangent of half the eorresponding angle. 

With Cl and SI known, angle (h is fully determined. Note that the two 
real intersections of .c with C provide eaeh one value of (h, as depicted in 
Fig.4.26. 

Onee (h is available, both C12 and S12 are eomputed uniquely from 
eqs.(4.103a & b), and henee, eaeh value of (h yields a unique value of 

-~-'\ ,...., 'Il. \ 
( \ CJi-J_ 
\ J ~--- ----.... I~/ ----:: 

I I 
I I 

I I 
I I 

I I 
I I 

I I 
I I 

I I 
I I 

I I 
I I 

FIGURE 4.25. The two real solutions of a planar manipulator. 
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FIGURE 4.26. The two real values of 01 depicted in Fig. 4.25. 

(h + O2 . Moreover, from this value, one unique value of O2 is readily derived 
for each value of 01 , namely, 

for i = 1,2 

Once 01 and O2 are available, 03 is readily derived from the geometry of 
Fig. 4.24, namely, 

03 = cf; - (01 + (2 ) 

and hence, each pair of (01 , ( 2 ) values yields one single value for 03 . Since 
we have two such pairs, the problem admits two real solutions. 

4-8.2 Velocity Analysis 

Velocity analysis is most easily accomplished if the general velocity relations 
derived in Section 4.5 are recalled and adapted to planar manipulators. 
Thus we have, as in eq.(4.54), 

(4.105a) 

where now, 

(4.105b) 
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and {ri H are defined as in Subsection 4.8.2, Le., as the vectors directed 
from Oi to P. As in the previous subsection, we ass urne here that the 
manipulator moves in the X-Y plane, and hence, all revolute axes are 
parallel to the Z axis, vectors ei and ri, for i = 1,2,3, thus taking on the 
forms 

with t reducing to 

t=[O 0 q; xp iJp of (4.105c) 

in which xp and iJp denote the components of the velo city of P. Thus, 

and hence, the foregoing cross product can be expressed as 

where E was defined in eq.(4.102) and Si is the 2-dimensional projection 
of ri onto the x-y plane of motion, Le., Si == [Xi ydT • Equation (4.105a) 
thus reduces to 

(4.106) 

where 0 is the 2-dimensional zero vector and p is now reduced to p 
[ x, iJ V. In summary, then, by working only with the three nontrivial equa
tions of eq.(4.106), we can represent the velocity relation using a 3 x 3 
Jacobian in eq.(4.105a). To this end, we redefine J and t as 

(4.107) 

The velocity resolution of this manipulator thus reduces to solving for the 
three joint rates from eq.(4.105a), with J and t defined as in eq.(4.107), 
which thus leads to the system below: 

1 ] [~ll [~] ES3~: p 
(4.108) 

Solving for {(}i H is readily done by first reducing the system of equa
tions appearing in eq.(4.105a) to one of two equations in two unknowns 
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by resorting to Gaussian elimination. Indeed, if the first scalar equation 
of eq.(4.108) is multiplied by ES l and the product is subtracted from the 
2-dimensional vector equation, we obtain 

(4.109) 

from which a reduced system of two equations in two unknowns is readily 
obtained, namely, 

(4.110) 

The system of equations (4.110) can be readily solved if Fact 4.8.4 is 
recalled, namely, 

where D. is the determinant of the 2 x 2 matrix involved, i.e., 

We thus have 

(4.112a) 

(4.112b) 

Further, Öl is computed from the first scalar equation of eq.(4.108), i.e., 

(4. 112c) 

thereby completing the velo city analysis. 
The foregoing calculations are summarized below in algorithmic form, 

with the numbers of multiplications and additions indicated at each stage. 
In those numbers, we have taken into account that a multiplication of E by 
any 2-dimensional vector incurs no computational cost, but rat her a simple 
rearrangement of the entries of this vector, with areversal of one sign. 

OM+2A 

OM+2A 
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3. .6. .- dIl Ed2l 2M+IA 

4. u.- p - ~ESI 2M+2A 

5. u.- u/.6. 2M+üA 

6. 
. T (h .- u d 3l 2M+IA 

7. 
. T (h.- -u d 2l 2M+IA 

8. Öl .- ~ - Ö2 - Ö3 üM+2A 

The complete calculation of joint rates thus consumes only 10M and llA, 
which represents a savings of about 67% of the computations involved if 
Gaussian elimination is applied without reg&ding the algebraic structure 
of the Jacobian J and its kinematic and geometrie significance. In fact, 
the solution of an arbitrary system of three equations in three unknowns 
requires, from eq.(4.62a), 28 additions and 23 multiplications. If the cost 
of calculating the right-hand side is added, namely, 4A and 6M, a total 
of 32A and 29M is required to solve for the joint rates if straightforward 
Gaussian elimination is used. 

4.8.3 Acceleration Analysis 

The calculation of the joint accelerations needed to produce a given twist 
rate of the EE is readily accomplished by differentiating both sides of 
eq.(4.105a), with definitions (4.107), i.e., 

JÖ +jö = i 

from which we readily derive a system of equations similar to eq.(4.105a) 
with Ö as unknown, namely, 

where 

and 

!h = (Öl + Ö2 + (3)Ea3 

82 = a2 + 83 = (Öl + (2)Ea2 + 83 

81 = al + 82 = ÖlEsl + 82 

Now we can proceed by Gaussian elimination to solve for the joint accelera
tions in exactly the same manner as in Subsection 4.8.2, thereby obtaining 
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the counterpart of eq.(4.110), namely, 

with W defined as 

and hence, similar to eqs.(4.112a-c), one has 

.. (S3 - Sl)Tw 
(h = -'---.60""""':"-

.. (S2 - Sl)Tw 
(h=- .60 

Öl = ~ - (rh + B3) 

(4.113a) 

(4.113b) 

(4. 114a) 

(4. 114b) 

(4. 114c) 

Below we summarize the foregoing calculations in algorithmic form, in
dicating the numbers of operations required at each stage. 

l. 83 f-- (01 + O2 + (3)Ea3 2M & 2A 

2. 82 f-- (01 + B2)Ea2 + 83 2M &3A 

3. 81 f-- BIEs1 + 82 2M&2A 

4. w = P - E(B181 + B282 + 0383 + ~Sl) 8M&8A 

5. Wf--w/.6o 2M+OA 

6. 
.. T (h f-- W d31 2M+1A 

7. 
.. T (h f-- -w d 21 2M+1A 

8. Öl f-- ~ - (Ö2 + (3) OM+2A 

where d 21 and d 31 are available from velo city calculations. The joint accel
erations thus require a total of 20 multiplications and 19 additions. These 
figures represent substantial savings when compared with the numbers of 
operations required if plain Gaussian elimination were used, namely, 33 
multiplications and 35 additions. 

It is noteworthy that in the foregoing algorithm, we have replaced neither 
the sum 01 + ih + 03 nor B1E(SI + S2 + S3) by wand correspondingly, by 
p, because in path tracking, there is no perfect match between joint and 
Cartesian variables. In fact, joint-rate and joint-acceleration calculations 
are needed in feedback control schemes to estimate the position, velo city, 
and acceleration errors by proper corrective actions. 
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4.8.4 Static Analysis 

Here we assurne that a planar wrench acts at the end-effector of the manipu
lator appearing in Fig. 4.24. In accordance with the definition of the plan ar 
twist in Subsection 4.8.2, eq.( 4.107), the planar wrench is now defined as 

(4.115) 

where n is the scalar couple acting on the end-effector and f is the 2-
dimensional force acting at the operation point P of the end-effector. If 
additionally, we denote by T the 3-dimensional vector of joint torques, the 
planar counterpart of eq.(4.97) follows, i.e., 

(4.116) 

where 

Now, in order to solve for the wrench w acting on the end-effector, given the 
joint torques T and the posture of the manipulator, we can still apply our 
compact Gaussian-elimination scherne, as introduced in Subsection 4.8.2. 
To this end, we subtract the first scalar equation from the second and the 
third scalar equations of eq.(4.116), which renders the foregoing system in 
the form 

Thus, the last two equations have been decoupled from the first one, which 
allows us to solve them separately, i.e., we have reduced the system to one 
of two equations in two unknowns, namely, 

(4.117) 

from which we readily obtain 

(4.118) 

and hence, upon expansion of the above inverse, 

(4.119) 

where Ll is exactly as defined in eq.(4.111). Finally, the resultant moment n 
acting on the end-effector is readily calculated from the first scalar equation 
of eq.(4.116), namely, as 

n = Tl + sTEf 
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thereby completing the static analysis of the manipulator under study. A 
quick analysis of computational costs shows that the foregoing solution 
needs 8M and 6A, or a savings of about 70% if straight forward Gaussian 
elimination is applied. 

4.9 Kinetostatic Performance Indices 

The balance of Part I of the book does not depend on this section, which can 
thus be skipped. We have included it here because (i) it is a simple matter to 
render the section self-contained, while introducing the concept of condition 
number and its relevance in robotics; (ii) kinetostatic performance can be 
studied with the background of the material included up to this section; 
and (iii) kinetostatic performance is becoming increasingly relevant as a 
design criterion and as a figure of merit in robot control. 

A kinetostatic performance index of a robotic mechanical system is a 
scalar quantity that measures how weH the system behaves with regard to 
force and motion transmission, the latter being understood in the differen
tial sense, Le., at the velo city level. Now, a kinetostatic performance index, 
or kinetostatic index for brevity, may be needed to assess the performance 
of a robot at the design stage, in which case we need a post ure-independent 
index. In this case, the index becomes a function of the robot architecture 
only. If, on the other hand, we want to assess the performance of a given 
robot while performing a task, what we need is a posture-dependent index. 
In many instances, this difference is not mentioned in the robotics liter
ature, although it is extremely important. Moreover, while performance 
indices can be defined for aH kinds of robotic mechanical systems, we fo
cus here on those associated with serial manipulators, which are the ones 
studied most intensively. 

Among the various performance indices that have been proposed, one 
can cite the concept of service angle, first introduced by Vinogradov et 
al. (1971), and the conditioning of robotic manipulators, as proposed by 
Yang and Lai (1985). Yoshikawa (1985), in turn, introduced the concept of 
manipulability, which is defined as the square root of the determinant of the 
product of the manipulator Jacobian by its transpose. Paul and Stevenson 
(1983) used the absolute value of the determinant of the Jacobian to assess 
the kinematic performance of spherical wrists. Note that for square Jaco
bians, Yoshikawa's manipulability is identical to the absolute value of the 
determinant of the Jacobian, and hence, the latter coincides with Paul and 
Stevenson's performance index. It should be pointed out that these indices 
were defined for control purposes and hence, are posture-dependent. Ger
mane to these concepts is that of dextrous workspace, introduced by Kumar 
and Waldron (1981), and used for geometrie optimization by Vijaykumar 
et al. (1986). Although the concepts of service angle and manipulability are 
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clearly different, they touch upon a common underlying issue, namely, the 
kinematic, or alternatively, the static performance of a manipulator from 
an accuracy viewpoint. 

What is at stake when discussing the manipulability of a robotic manip
ulator is a measure of the invertibility of the associated Jacobian matrix, 
since this is required for velo city and force-feedback controI. One furt her 
performance index is based on the condition number of the Jacobian, which 
was first used by Salisbury and Craig (1982) to design mechanical fingers. 
Here, we shall call such an index the conditioning of the manipulator. For 
the sake of brevity, we devote the discussion below to only two indices, 
namely, manipulability and conditioning. Prior to discussing these indices, 
we recall a few facts from linear algebra. 

Although the concepts discussed here are equally applicable to square 
and rectangular matrices, we shall focus on the former. First, we give a 
geometrie interpretation of the mapping induced by an n x n matrix A. 
Here, we do not assurne any particular structure of A, which can thus 
be totally arbitrary. However, by invoking the polar-decomposition theorem 
(Strang, 1988), we can factor A as 

A=RU=VR (4.120) 

where R is orthogonal, although not necessarily proper, while U and V are 
both at least positive-semidefinite. Moreover, if A is nonsingular, then U 
and V are both positive-definite, and R is unique. Clearly, U can be readily 
determined as the positive-semidefinite or correspondingly, positive-definite 
square root of the product AT A, which is necessarily positive-semidefinite; 
it is, in fact, positive-definite if A is nonsingular. We recall here that the 
square root of arbitrary matrices was briefly discussed in Subsection 2.3.6. 
The square root of a positive-semidefinite matrix can be most easily under
stood if that matrix is assumed to be in diagonal form, which is possible 
because such a matrix is necessarily symmetrie, and every symmetrie ma
trix is diagonalizable. The matrix at hand being positive-semidefinite, its 
eigenvalues are nonnegative, and hence, their square roots are all real. The 
positive-semidefinite square root of interest is, then, readily obtained as the 
diagonal matrix whose nontrivial entries are the nonnegative square roots 
of the aforementioned eigenvalues. With U determined, R can be found 
uniquely only if A is nonsingular, in which case U is positive-definite. If 
this is the case, then we have 

(4.121a) 

It is a simple matter to show that V can be found, in turn, as a similarity 
transformation of U, namely, as 

Now, let vector x be mapped by A into z, i.e., 

Z =Ax=RUx 

(4.121b) 

(4.122a) 
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Moreover, let 

y==Ux (4.122b) 

and hence, we have a concatenation of mappings, namely, U maps x into 
y, while R maps y into z. Thus, by virtue of the nature of matrices R 
and U, the latter maps the unit n-dimensional ball into an n-axis ellipsoid 
whose semiaxis lengths bear the ratios of the eigenvalues of U. Moreover, 
R maps this ellipsoid into another one with identical semiaxes, except that 
it is rotated about its center or reflected, depending upon whether R is 
proper or improper orthogonal. In fact, the eigenvalues of U or for that 
matter, those of V, are not hing but the singular values of A. Yoshikawa 
(1985) explained the foregoing relations resorting to the singular-value de
eomposition theorem. We prefer to invoke the polar-decomposition theorem 
instead, because of the geometrie nature of the latter, as opposed to the 
former, which is of an algebraic nature-it is based on a diagonalization of 
either U or V, which is really not needed. 

We illustrate the two mappings U and R in Fig. 4.27, where we orient 
the X, Y, and Z axes along the three eigenvectors of U. Therefore, the 
semiaxes of the ellipsoid are oriented as the eigenvectors of U as weil. If 
A is singular, then the ellipsoid degenerates into one with at least one 
vanishing semiaxis. On the other hand, if matrix A is isotropie, i.e., if all 
its singular values are identical, then it maps the unit ball into another 
ball, either enlarged or shrunken. 

For our purposes, we can regard the Jacobian of aserial manipulator as 
mapping the unit ball in the spaee of joint rates into a rotated or refleeted 
ellipsoid in the spaee of Cartesian velocities, or twists. Now, let us assume 
that the polar decomposition of J is given by Rand U, the manipulability 
J1, of the robot under study thus becoming 

J1, == Idet(J)1 == Idet(R)1 Idet(U) I (4.123a) 

z u z' R 
~ 

A 

FIGURE 4.27. Geometrie representation of mapping indueed by matrix A. 



www.manaraa.com

4.9 Kinetostatic Performance Indices 177 

Since R is orthogonal, the absolute value of its determinant is unity. 
Additionally, the determinant of U is nonnegative, and hence, 

J.l = det(U) (4.123b) 

whieh shows that the manipulability is the product of the eigenvalues of 
U or equivalently, of the singular values of J. Now, the product of those 
singular values, in the geometrie interpretation of the mapping induced by 
J, is proportional to the volume of the ellipsoid at hand, and hence, J.l can 
be interpreted as a measure of the volume of that ellipsoid. It is apparent 
that the manipulability defined in eq.(4.123b) is posture-dependent. For 
example, if J is singular, at least one of the semiaxes of the ellipsoid van
ishes, and so does its volume. Manipulators at singular configurations thus 
have a manipulability of zero. 

Now, if we want to use the concept of manipulability to define a post ure
independent kinetostatic index, we have to define this index in a global 
sense. This can be done in the same way as magnitudes of vectors are de
fined as the sum of the squares of their components, Le., as the integral 
of a certain power of the manipulability over the whole workspace of the 
manipulator, which would amount to defining the index as a norm of the 
manipulability in aspace of functions. For example, we can use the max
imum manipulability attained over the whole workspace, thereby ending 
up with what would be like a Chebyshev norm; alternatively, we can use 
the root-mean square (rms) value of the manipulability, thereby ending up 
with a measure similar to the Euclidean norm. 

Furthermore, if we have a Jacobian J whose entries alt have the same 
units, then we can define its condition number I\:(J) as the ratio of the 
largest singular value 0"1 of J to the smallest one, o"s, Le., 

(4.124) 

Note that I\:(J) can attain values from 1 to infinity. Clearly, the condition 
number attains its minimum value of unity for matrices with identical sin
gular values; such matrices map the unit ball into another ball, although of 
a different size, and are, thus, called isotropie. By extension, we shall call 
mampulators whose Jacobian matrix can attain isotropie values isotropie 
as weIl. On the other side of the spectrum, singular matriees have a smallest 
singular value that vanishes, and hence, their condition number is infinity. 
The condition number of J can be thought of as indicating the distortion of 
the unit ball in the space of joint-variables. The larger this distortion, the 
greater the condition number, the worst-conditioned Jacobians being those 
that are singular. For these, one of the semiaxes of the ellipsoid vanishes 
and the ellipsoid degenerates into what would amount to an elliptieal disk 
in the 3-dimensional space. 
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The condition number of a square matrix can also be understood as a 
measure of the relative roundoff-error amplifieation of the eomputed re
sults upon solving a linear system of equations assoeiated with that ma
trix, with respeet to the relative roundoff error of the data (Dahlquist and 
Björek, 1974). Based on the eondition number of the Jaeobian, a posture
independent kinematic conditioning index of robotie manipulators ean now 
be defined as aglobai measure of the eondition number, or its reeiproeal 
for that matter, which is better behaved because it is bounded between 0 
and unity. 

Now, if the entries of J have different units, the foregoing definition of 
K(J) cannot be applied, for we would face a problem of ordering singular 
values of different units from largest to smallest. We resolve this inconsis
tency by defining a eharacteristic length, by whieh we divide the Jaeobian 
entries that have units of length, thereby produeing a new Jacobian that 
is dimensionally homogeneous. We shall therefore divide our study into (i) 
manipulators for only positioning tasks, (ii) manipulators for only orien
tation tasks, and (iii) manipulators for both positioning and orientation 
tasks. The characteristic length will be introduced when studying the last 
of these. 

In the sequel, we will need an interesting property of isotropie matri
ces that is recalled below. First note that given the polar decomposition 
of a square matrix A of eq.(4.120), its singular values are simply the--
nonnegative---eigenvalues of matrix U, or those of V, for both matrices 
have identieal eigenvalues. Moreover, if A is isotropie, all the foregoing 
eigenvalues are identieal, say equal to (T, and henee, matriees U and V are 
proportional to the n x n identity matrix, i.e., 

U = V = (Tl (4.125) 

In this case, then, 
( 4.126) 

Given an arbitrary manipulator of the serial type with a Jacobian matrix 
whose entries all have the same units, we ean caIculate its condition number 
and use aglobai measure of this to define a posture-independent kineto
static index. Let Km be the minimum value attained by the condition num
ber of the dimensionally-homogeneous Jacobian over the whole workspace. 
Note that I/Km can be regarded as a Chebyshev norm of the reciprocal of 
K(J), because now I/Km represents the maximum value of this reeiprocal 
in the whole workspace. We then introduee a posture-independent perfor
mance index, the kinematic conditioning index, or KCI for brevity, defined 
as 

1 
KCI = - x 100 

Km 
( 4.127) 

Notiee that since the condition number is bounded from below, the KCI 
is bounded by a value of 100%. Manipulators with a KCI of 100% are those 
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identified above as isotropie beeause their Jaeobians have, at the eonfigura
tion of minimum eondition number, all their singular values identical and 
different from zero. 

4.9.1 Positioning Manipulators 

Here, again, we shall distinguish between planar and spatial manipulators. 
These are studied separately. 

Plan ar Manipulators 

If the manipulator of Fig. 4.24 is limited to positioning tasks, we ean dis
pense with its third axis, the manipulator thus reducing to the one shown 
in Fig. 4.25; its Jaeobian reduees eorrespondingly to 

If we want to design this manipulator for maximum manipulability, we need 
first to determine its manipulability as given by eq.(4.123a) or correspond
ingly, as J.L = Idet(J)I. Now, note that 

and since matrix E is orthogonal, its determinant equals unity. Thus, the 
determinant of interest is now calculated using Fact 4.8.3 of Seetion 4.8, 
namely, 

det(J) = -siEs2 (4.128) 

Therefore, 
J.L = IsiEs21 == II S llllls211I sin(Sl' s2)1 

where (SI, S2) stands for the angle between the two vectors inside the paren
theses. Now let us denote the manipulator reach with R, Le., R = al + a2, 
and let ak = RPk, where Pk, for k = 1,2, is a dimensionless number. Hence, 

(4.129) 

with PI and P2 subjected to 

PI + P2 = 1 (4.130) 

The design problem at hand, then, can be formulated as an optimization 
problem aimed at maximizing J.L as given in eq.(4.129) over PI and P2, 
subject to the constraint (4.130). This optimization problem can be readily 
solved using, for example, Lagrange multipliers, thereby obtaining 

1 
PI = P2 = -2 
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the absolute value of the si ne of the angle between the vectors SI and 82 

attaining its maximum value when these vectors make an angle of 900 • The 
maximum manipulability thus becomes 

(4.131) 

Incidentally, the equal-Iength condition maximizes the workspace volume 
as weIl. 

On the other hand, if we want to minimize the condition number of J, 
we should aim at rendering it isotropie, whieh means that the product JT J 
should be proportional to the identity matrix, and so, 

where a is the repeated singular value of J. Hence, for J to be isotropie, 
all we need is that the two vectors 81 and 82 have the same norm and that 
they lie at right angles. The solution is a manipulator with link lengths 
observing a ratio of .../2/2, Le., with aI/a2 = .../2/2, and the two link axes 
at an angle of 1350 , as depicted in Fig. 4.28. Manipulators of the above 
type, used as mechanical fingers, were investigated by Salisburg and Craig 
(1982), who found that these manipulators can be rendered isotropie if 
given the foregoing dimensions and configured as shown in Fig. 4.28. 
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FIGURE 4.28. A two-axis isotropie manipulator. 
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Spatial Manipulators 

Now we have a manipulator like that depicted in Fig. 4.9, its Jaeobian 
matrix taking on the form 

(4.132) 

The condition for isotropy of this kind of manipulator takes on the form of 
eq.(4.126), which thus leads to 

3 

l)ek x rk)(ek x rk)T = 0-2 1 
1 

(4.133) 

This eondition ean be attained by various designs, one example being the 
manipulator of Fig. 4.15. Another isotropie manipulator for 3-dimensional 
positioning tasks is displayed in Fig. 4.29. 

Note that the manipulator of Fig. 4.29 has an orthogonal arehiteeture, 
the ratio of its last link length to the length of the intermediate link being, 
as in the 2-dimensional ease, ~/2. Sinee the first axis does not affect 
singularities, neither does it affect isotropy, and henee, not only does one 
loeation of the operation point exist that renders the manipulator isotropie, 
but a whole loeus, namely, the circle known as the isotropy circle, indicated 
in the same figure. By the same token, the manipulator of Fig. 4.28 has 
an isotropy circle eentered at the center of the first joint, with a radius of 
(~/2)al. 
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FIGURE 4.29. An isotropie manipulator for 3-dimensional positioning tasks. 
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4.9.2 Orienting Manipulators 

We now have a three-revolute manipulator like that depicted in Fig. 4.17, 
its Jaeobian taking on the simple form 

(4.134) 

and henee, the isotropy eondition of eq. (4.126) leads to 

(4.135) 

What the foregoing eondition states is that a spherical wrist for orienting 
tasks is isotropie if its three unit veetors {ed~ are so laid out that the three 
products ekef, for k = 1,2,3, add up to a multiple of the 3 x 3 identity 
matrix. This is the ease if the three foregoing unit veetors are orthonor
mal, which oeeurs in orthogonal wrists when the two planes defined by the 
eorresponding pairs of neighboring axes are at right angles. Moreover, the 
value of a in this ease ean be readily found if we take the traee of both 
si des of the above equation, whieh yields 

(4.136) 

and henee, a = 1, beeause all three veetors on the left-hand side are of unit 
magnitude. In summary, then, orthogonal wrists, whieh are rat her frequent 
among in dust rial manipulators, are isotropie. Here we have an example of 
engineering insight leading to an optimal design, for such wrists existed 
long before isotropy was introdueed as a design eriterion for manipula
tors. Moreover, notiee that from the results of Subseetion 4.4.2, spherieal 
manipulators with an orthogonal arehiteeture have a maximum workspace 
volume. That is, isotropie manipulators of the spherieal type have two 
optimality properties: they have both a maximum workspace volume and 
a maximum KCI. Apparently, the manipulability of orthogonal spherical 
wrists is also optimal, as the reader is invited to verify, when the wrist is 
postured so that its three axes are mutually orthogonal. In this post ure, 
the manipulability of the wrist is unity. 

4.9.3 Positioning and Orienting Manipulators 

We saw already in Subsubseetion 4.9.3 that the optimization of the two in
dices studied here----the eondition number of the Jaeobian matrix and the 
manipulability-leads to different manipulators. In fact, the two indices 
entail even deeper differenees, as we shall see presently. First and foremost, 
as we shall prove for both planar and spatial manipulators, the manipula
bility IL is independent of the operation point P of the end-effeetor, while 
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the condition number is not. One more fundamental difference is that while 
calculating the manipulability of manipulators meant for both positioning 
and orienting tasks poses no problem, the condition number cannot be 
calculated, at least directly, for this kind of manipulator. Indeed, in order 
to determine the condition number of the Jacobian matrix, we must or
der its singular values from largest to smallest. However, in the presence 
of positioning and orienting tasks, three of these singular values, namely, 
those associated with orientation, are dimensionless, while those associated 
with positioning have units of length, thereby making impossible such an 
ordering. We resolve this dimensional inhomogeneity by introducing a nor
malizing characteristic length. Upon dividing the three positioning rows, 
i.e., the bot tom rows, of the Jacobian by this length, a non dimensional Ja
cobian is obtained whose singular values are non dimensional as weIl. The 
characteristic length is then defined as the normalizing length that renders 
the condition number of the Jacobian matrix aminimum. Below we shall 
determine the characteristic length for isotropie manipulators; determin
ing the same for non isotropie manipulators requires solving a minimization 
problem that calls for numerical techniques, as illustrated with an example. 

Planar Manipulators 

In the ensuing development, we will need the planar counterpart of the 
twist-transfer formula of Subsection 3.4.2. First, we denote the 3-dimen
sional twist of a rigid body undergoing planar motion, defined at a point 
A, by tA; when defined at point B, the corresponding twist is denoted by 
tB, Le., 

( 4.137) 

The relation between the two twists, or the plan ar twist-transfer formula, 
is given by a linear transformation U as 

(4.138a) 

where U is now defined as 

U _ [ 1 
- E(b - a) (4.138b) 

with a and b representing the position vectors of points A and B, and 12 

stands for the 2 x 2 identity matrix. Moreover, U is, not surprisingly, a 
member of the 3 x 3 uni modular group, Le., 

det(U) = 1 

Because of the planar twist-transfer formula, the Jacobian defined at an 
operation point B is related to that defined at an operation point A of the 
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same end-effector by the same linear transformation U, i.e., if we denote 
the two Jacobians by JA and J B, then 

(4.139) 

and if we denote by J.LA and J.LB the manipulability calculated at points A 
and B, respectively, then 

(4.140) 

thereby proving that the manipulability is insensitive to a change of op
eration point, or to a change of end-effector, for that matter. Note that a 
similar analysis for the condition number cannot be completed at this stage 
because as pointed out earlier, the condition number of these Jacobian 
matrices cannot even be calculated directly. 

In order to resolve the foregoing dimensional inhomogeneity, we introduce 
the characteristic length L, which will be defined as that rendering the 
Jacobian dimensionally homogeneous and optimally conditioned, i.e., with 
a minimum condition number. We thus redefine the Jacobian matrix of 
interest as 

J= [lE1 
L rl 

(4.141) 

Now, if we want to size the manipulator at hand by properly choosing 
its geometrie parameters so as to render it isotropie, we must observe the 
isotropy condition, eq.(4.126), whieh readily leads to 

1ßL~rk ] _ [~2 ~2 
f,E[L~(rkrnlET - 0 0 

(4.142) 

and hence, 

(4.143a) 

(4.143b) 

;2E (~(rkrn) ET = a 2 12 (4.143e) 

What eq.(4.143a) states is simply that the triple singular value of the 
isotropie J is V3; eq.(4.143b) states, in turn, that the operation point is 
the eentroid of the centers of aB manipulator joints if its Jaeobian matrix 
is isotropie. Now, in order to gain more insight into eq.( 4.143e), we note 
that sinee E is orthogonal and a 2 = 3, this equation can be rewritten in a 
simpler form, namely, 

(4.144) 
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Further , if we recall the definition of the moment of inertia of a rigid body, 
we can immediately realize that the moment of inertia I p of a set of par
ticles of unit mass located at the centers of the manipulator joints, with 
respect to the operation point P, is given by 

3 

I p == L (11 rk11 212 - rkrf) (4.145) 

from whieh it is apparent that the moment of inertia of the set comprises 
two parts, the first being isotropie-it is a multiple of the 2 x 2 identity 
matrix-the second not necessarily so. However, the second part has the 
form of the left-hand side of eq.( 4.144). Hence, eq.(4.144) states that if the 
manipulator under study is isotropic, then its joint centers are located, at 
the isotropic configuration, at the corners of a triangle that has circular 
inertial symmetry. What we mean by this is that the 2 x 2 moment of 
inertia of the set of particles, with entries lxx, lxy, and lyy, is similar to 
that of a circle, i.e., with lxx = lyy and lxy = O. An obvious candidate 
for such a triangle is, obviously, an equilateral triangle, the operation point 
thus coinciding with the center of the triangle. Since the corners of an 
equilateral triangle are at equal distances d from the center, and these 
distances are not hing but Ilrk 11, then the condition below is readily derived 
for isotropy: 

(4.146) 

In order to compute the characteristie length of the manipulator under 
study, let us take the trace of both sides of eq.(4.144), thereby obtaining 

and hence, upon substituting eq.( 4.146) into the foregoing relation, an 
expression for the characteristie length, as pertaining to plan ar isotropic 
manipulators, is readily derived, namely, 

L= V2d 
2 

(4.147) 

It is now a simple matter to show that the three link lengths of this isotropie 
manipulator are al = a2 = V3d and a3 = d. Such a manipulator is sketched 
in an isotropic configuration in Fig. 4.30. 

Spatial Manipulators 

The entries of the Jacobian of a six-axis manipulator meant for both po
sitioning and orienting tasks are dimensionally inhomogeneous as well. In
deed, as discussed in Section 4.5, the ith column of J is composed of the 
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FIGURE 4.30. The planar 3-R isotropie manipulator. 

Plücker coordinates of the ith axis of the manipulator, namely, 

e3 e4 e5 
e3 x r3 e4 x r 4 e5 x r5 

(4.148) 

Now it is apparent that the first three rows of J are dimensionless, 
whereas the remaining three, eorresponding to the moments of the axes 
with respect to the operation point of the end-effector, have units of length. 
This dimensional inhomogeneity is resolved in the same way as in the case of 
planar manipulators for both positioning and orienting tasks, i.e., by means 
of a characteristic length. This length is defined as the one that minimizes 
the condition number ofthe dimensionless Jacobian thus obtained. We then 
redefine the Jacobian as 

and hence, the isotropy condition of eq.( 4.126) leads to 

6 

~ek(ek x rkf = 0 
1 

(4.150a) 

(4.150b) 
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(4.150c) 

where 1 is the 3 x 3 identity matrix, and 0 is the 3 x 3 zero matrix. Now, 
if we take the trace of both sides of eq.( 4.150a), we obtain 

Furthermore, we take the trace of both sides of eq.(4.150c), which yields 

But liek x rkl1 2 is nothing but the square of the distance dk of the kth 
revolute axis to the operation point, the foregoing equation thus yielding 

Le., the eharaeteristie length of a spatial six-revolute isotropie manipulator 
is the root-mean square of the distanees of the revolute axes to the opera
tion point when the mbot finds itself at the posture of minimum eondition 
number. 

Furthermore, eq.(4.150a) states that if {ek H is regarded as the set of 
position vectors of points {Pk H on the surface of the unit sphere, then 
the moment-of-inertia matrix of the set of equal masses located at these 
points has spherieal symmetry. What the latter means is that any direction 
of the 3-dimensional space is a principal axis of inertia of the foregoing 
set. Likewise, eq.(4.150c) states that if {ek x rk His regarded as the set of 
position vectors of points { Qk } in the 3-dimensional Euclidean space, then 
the moment-of-inertia matrix of the set of equal masses located at these 
points has spherical symmetry. 

Now, in order to gain insight into eq.(4.150b), let us take the axial vector 
of both sides of that equation, thus obtaining 

6 

Lek x (ek x rk) = 0 
1 

(4.151) 

with 0 denoting the 3-dimensional zero vector. Furthermore, let us denote 
by Ek the cross-product matrix of ek, the foregoing equation thus taking 
on the form 
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However, 
E% = -1 + ekek 

for every k, and henee, eq.(4.151) leads to 

6 

L)1 - ekef)rk = 0 
1 

Moreover, (1 - ekenrk is nothing but the normal eomponent of rk with 
respeet to ek, as defined in Seetion 2.2. Let us denote this eomponent by 
rt, thereby obtaining an alternative expression for the foregoing equation, 
namely, 

6 

I>t=O (4.152) 
1 

The geometrie interpretation of the foregoing equation is readily derived: 
To this end, let O~ be the foot of the perpendieular to the kth revolute 
axis from the operation point Pi then, rk is the veetor direeted from O~ to 
P. Therefore, the operation point of an isotropie manipulator, eonfigured 
at the isotropie posture is the eentroid of the set { O~ H of perpendieular 
feet from the operation point. 

A six-axis manipulator designed with an isotropie arehiteeture, DIE
STRO, is displayed in Fig. 4.31. The Denavit-Hartenberg parameters ofthis 
manipulator are given in Table 4.1. DIESTRO is eharaeterized by identieal 
link lengths a and offsets identical with this eommon link length, besides 
twist angles of 90° between all pairs of neighboring axes. Not surprisingly, 
the eharaeteristie length of this manipulator is a. 

Example 4.9.1 Find the KCI and the eharaeteristie length of the Fanue 
Are Mate robot whose DH parameters are given in Table 4.2. 

Solution: Apparently, what we need is the minimum value ~min that the 
eondition number of the manipulator Jaeobian ean attain, in order to eal
eulate its KCI as indieated in eq.(4.127). Now, the Fanue Are Mate robot 
is a six-revolute manipulator for positioning and orienting tasks. Henee, 

TABLE 4.1. DH Parameters of DIESTRO 

i ai (mm) bi (mm) (}i 8i 

1 50 50 90° 81 

2 50 50 -900 82 

3 50 50 900 83 

4 50 50 -900 84 

5 50 50 900 85 

6 50 50 -900 86 
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FIGURE 4.31. DIESTRO, a six-axis isotropie manipulator. 

TABLE 4.2. DH Parameters of the Fanuc Arc Mate Manipulator 

i ai (mm) bi (mm) Qi Bi 
1 200 810 90° BI 
2 600 0 0° B2 

3 130 30 90° B3 
4 0 550 90° B4 

5 0 100 90° B5 

6 0 100 0° B6 

its Jacobian matrix has to be first recast in nondimensional form, as in 
eq.(4.149). Next, we find L, along with the joint variables that determine 
the posture of minimum condition number via an optimization procedure. 
Prior to the formulation of the underlying optimization problem, however, 
we must realize that the first joint, accounting for motions of the manipu
lator as a single rigid body, does not affect its Jacobian condition number. 
We thus define the design vectaT x of the optimization problem at hand as 
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and set up the optimization problem as 

minll:(J) 
x 

The eondition number having been defined as the ratio of the largest to the 
smallest singular values of the Jaeobian matrix at hand, the gradient of the 
above objective funetion, Oll:/ox, is apparently elusive to ealculate. Thus, 
we use a direet-seareh method, i.e., a method not requiring any partial 
derivatives, but rather, only objeetive-funetion evaluations, to solve the 
above optimization problem. There are various methods of this kind at 
our disposal; the one we ehose is the simplex method, as implemented in 
Matlab. The results reported are displayed below: 

Xopt = [26.82° -56.06° 15.79° -73.59° -17.83° 0.3573] 

where the last entry, the eharaeteristie length of the robot, is in meters, 
i.e., 

L = 357.3 mm 

Furthermore, the minimum eondition number attained at the foregoing 
posture, with the eharaeteristie length found above, is 

II:m = 2.589 

Therefore, the KCI of the Fanue Are Mate is 

KCI = 38.625% 

and sö this robot is apparently far from being kinematieally isotropie. To 
be sure, the KCI of this manipulator ean still be improved dramatieally by 
noting that the eondition number is highly dependent on the loeation of 
the operation point of the end-effeetor. As reported by Tandirei, Angeles, 
and Ranjbaran (1992), an optimum seleetion of the operation point for the 
robot at hand yields a minimum eondition number of 1.591, whieh thus 
leads to a KCI of 62.85%. The point of the EE that yields the foregoing 
minimum is thus termed the characteristic point of the manipulator in the 
foregoing referenee. Its loeation in the EE is given by the DH parameters 
a6 and b6 , namely, 

a6 = 223.6 mm, b6 = 274.2 mm 
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5 
Trajectory Planning: 
Pick-and-Place Operations 

5.1 Introduction 

The motions undergone by robotic mechanical systems should be, as a rule, 
as smooth as possible; Le., abrupt changes in position, velo city, and acceler
ation should be avoided. Indeed, abrupt motions require unlimited amounts 
of power to be implemented, which the motors cannot supply because of 
their physicallimitations. On the other hand, abrupt motion changes arise 
when the robot collides with an object, a situation that should also be 
avoided. While smooth motions can be planned with simple techniques, as 
described below, these are no guarantees that no abrupt motion changes will 
occur. In fact, if the work environment is cluttered with objects, whether 
stationary or mobile, collisions may occur. Under ideal conditions, a flexible 
manufacturing cell is a work environment in which all objects, machines 
and workpieces alike, move with preprogrammed motions that by their 
nature, can be predicted at any instant. Actual situations, however, are 
far from being ideal, and system failures are unavoidable. Unpredictable 
situations should thus be accounted for when designing a robotic system, 
which can be done by supplying the system with sensors for the automatic 
detection of unexpected events or by providing for human monitoring. Nev
ertheless, robotic systems find applications not only in the well-structured 
environments of flexible manufl}-cturing cells, but also in unstructured en
vironments such as exploration of unknown terrains and systems in which 
humans are present. The planning of robot motions in the latter case is 
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obviously much more challenging than in the former. Robot motion plan
ning in unstructured environments calls for techniques beyond the scope 
of those studied in this book, involving such areas as pattern recognition 
and artificial intelligence. For this reason, we have devoted this book to the 
planning of robot motions in structured environments only. 

Two typical tasks call for trajectory planning techniques, namely, 

• pick-and-place operations (PPO), and 

• continuous paths (CP). 

We will study PPO in this chapter, with Chapter 9 devoted to CP. More
over, we will focus on simple robotic manipulators of the serial type, al
though these techniques can be directly applied to other, more advanced, 
robotic mechanical systems. 

5.2 Background on PPO 

In PPO, a robotic manipulator is meant to take a workpiece from a given 
initial pose, specified by the position of one of its points and its orienta
tion with respect to a certain co ordinate frame, to a final pose, specified 
likewise. However, how the object moves from its initial to its final pose is 
immaterial, as long as the motion is smooth and no collisions occur. Pick
and-place operations are executed in elementary manufacturing operations 
such as loading and unloading of belt conveyors, tool changes in machine 
tools, and simple assembly operations such as putting roller bearings on a 
shaft. The common denominator of these tasks is material handling, which 
usually requires the presence of conventional machines whose motion is very 
simple and is usually characterized by a uniform velocity. In some instances, 
such as in packing operations, a set of workpieces, e.g., in a magazine, is 
to be relocated in a prescribed pattern in a container, which constitutes 
an operation known as palletizing. Although palletizing is a more elaborate 
operation than simple pick-and-place, it can be readily decomposed into a 
sequence of the latter operations. 

It should be noted that although the initial and the final poses in a PPO 
are prescribed in the Cartesian space, robot motions are implemented in 
the joint space. Hence, the planning of PPO will be conducted in the latter 
space, which brings about the need of mapping the motion thus planned 
into the Cartesian space, in order to ensure that the robot will not collide 
with other objects in its surroundings. The latter task is far from being 
that simple, since it involves the rendering of the motion of all the moving 
links of the robot, each of which has a particular geometry. An approach to 
path planning first proposed by Lozano-Perez (1981) consists of mapping 
the obstacles in the joint space, thus producing obstacles in the joint space 
in the form of regions that the joint-space trajectory should avoid. The 
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FIGURE 5.1. Still image of the animation of a palletizing operation. 

idea can be readily implemented for simple planar motions and simple ge
ometries of the obstacles. However, for general 3-D motions and arbitrary 
geometries, the computational requirements make the procedure imprac
tical. A more pragmatic approach would consist of two steps, namely, (i) 
planning a preliminary trajectory in the joint space, disregarding the obsta
cles, and (ii) visually verifying if collisions occur with the aid of a graphics 
system rendering the animation of the robot motion in the presence of 
obstacles. The availability of powerful graphics hardware enables the fast 
animation of robot motions within a highly realistic environment. Shown 
in Fig. 5.1 is a still image of the animation produced by RVS, the McGill 
U niversity Robot- Visualization System, of the motion of a robot performing 
a palletizing operation. Commercial software for robot-motion rendering is 
available. 

By inspection of the kinematic closure equations of robotic manipulators
see eqs.(4.5a & b)-it is apparent that in the absence of singularities, 
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the mapping of joint to Cartesian variables, and vice versa, is continu
ous. Hence, a smooth trajectory planned in the joint space is guaranteed 
to be smooth in the Cartesian space, and the other way around, as long as 
the trajectory does not encounter a singularity. 

In order to proceed to synthesize the joint trajectory, we must then start 
by mapping the initial and final poses of the workpiece, which is assumed 
to be rigidly attached to the EE of the manipulator, into manipulator 
configurations described in the joint space. This is readily done with the 
methods described in Chapter 4. Let the vector of joint variables at the 
initial and final robot configurations be denoted by (h and 0F, respectively. 
Moreover, the initial pose in the Cartesian space is defined by the position 
vector PI of the operation point P of the EE and a rotation matrix QI. 
Likewise, the final pose in the Cartesian space is defined by the position 
vector PF of P and the rotation matrix QF· Moreover, let PI and PI 
denote the velo city and acceleration of P, while w land W I denote the 
angular velocity and angular acceleration of the workpiece, all of these at 
the initial pose. These variables at the final pose are denoted likewise, with 
the subscript I changed to F. Furthermore, we assume that time is counted 
from the initial pose, i.e., at this pose, t = O. If the operation takes place 
in time T, then at the final pose, t = T. We have thus the set of conditions 
that define a smooth motion between the initial and the final poses, namely, 

p(O) = PI P(O) = 0 p(O) = 0, (5.la) 

Q(O) = QI w(O) = 0 w(O) = 0 (5.lb) 

p(T) = PF P(T) = 0 p(T) = 0 (5.le) 

Q(T) = QF w(T) = 0 w(T) = 0 (5.ld) 

In the absence of singularities, then, the conditions of zero velo city and 
acceleration imply zero joint velo city and acceleration, and hence, 

0(0) = 01 

O(T) = OF 

8(0) = 0 

8(T) = 0 

5.3 Polynomial Interpolation 

8(0) = 0 

8(T) = 0 

(5.2a) 

(5.2b) 

A simple inspection of conditions (5.2a) and (5.2b) reveals that a linear 
interpolation between initial and final configurations will not work here, and 
neither will a quadratic interpolation, for its slope vanishes only at a single 
point. Hence, a higher-order interpolation is needed. On the other hand, 
these conditions imply, in turn, six conditions for every joint trajectory, 
which means that if a polynomial is to be employed to represent the motion 
of every joint, then this polynomial should be at least of the fifth degree. 
We thus start by studying trajectory planning with the aid of a 5th-degree 
polynomial. 
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5.3.1 A 3-4-5 Interpolating Polynomial 

In order to represent each joint motion, we use here a fifth-order polynomial 
S(7), namely, 

(5.3) 

such that 

O::;s::;l, (5.4) 

and 

t 
7= -

T 
(5.5) 

We will thus aim at anormal polynomial that, upon scaling both its argu
ment and the polynomial itself, will allow us to represent each of the joint 
variables Bj throughout its range of motion, so that 

(5.6a) 

where Bf and Bf are the given initial and final values of the jth joint 
variable. In vector form, eq.(5.6a) becomes 

(5.6b) 

and hence, 

Likewise, 

(5.6d) 

and 

(5.6e) 

What we now need are the values of the coefficients of s( 7) that appear in 
eq.(5.3). These are readily found by recalling conditions (5.2a & b), upon 
consideration of eqs.(5.6b--d). We thus obtain the end conditions for S(7), 
namely, 

S(O) = 0, s'(O) = 0, s"(O) = 0, s(l) = 1, s'(l) = 0, s"(1) = 0 
(5.7) 

The derivatives of S(7) appearing above are readily derived from eq.(5.3), 
i.e., 

(5.8) 
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and 

S"(7) = 20a73 + 12b72 + 6C7 + 2d 

Thus, the first three eonditions of eq.(5.7) lead to 

!=e=d=O 

(5.9) 

(5.10) 

while the last three eonditions yield three linear equations in a, b, and c, 
namely, 

a+b+c=1 

5a + 4b + 3c = 0 

20a + 12b + 6c = 0 

(5.lla) 

(5.llb) 

(5.lle) 

Upon solving the three foregoing equations for the three aforementioned 
unknowns, we obtain 

a = 6, b = -15, c = 10 (5.12) 

and henee, the normal polynomial sought is 

S(7) = 675 - 1574 + 1073 (5.13) 

which is ealled a 3-4-5 polynomial. 
This polynomial and its first three derivatives, all normalized to fall 

within the (-1, 1) range, are shown in Fig. 5.2. Note that the smoothness 
conditions imposed at the outset are respected and that the curve thus 
obtained is a monotonically growing function of 7, a rather eonvenient 
property for the problem at hand. 

It is thus possible to determine the evolution of eaeh joint variable if we 
know both its end values and the time T required to complete the motion. 
If no extra eonditions are imposed, we then have the freedom to perform 
the desired motion in as short a time T as possible. Note, however, that 
this time eannot be given an arbitrarily small value, for we must respeet 
the motor specifieations on maximum velo city and maximum torque, the 
latter being the subjeet of Chapter 6. In order to ease the diseussion, we 
limit ourselves to specifieations of maximum joint velocity and aeeeieration 
rather than maximum torque. From the form of function Bj(t) of eq.(5.6a), 
it is apparent that this function takes on extreme values at points eorre
sponding to those at which the normal polynomial attains its extrema. In 
order to find the values of 7 at which the first and seeond derivatives of s( 7) 
attain maximum values, we need to zero its seeond and third derivatives. 
These derivatives are displayed below: 

S'(7) = 3074 - 6073 + 3072 

S"(7) = 12073 -18072 +607 

S'" ( 7) = 36072 - 3607 + 60 

(5.14a) 

(5.14b) 

(5.14e) 
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from which it is apparent that the second derivative vanishes at the two 
ends of the interval 0 ~ 7 ~ 1. Additionally, the same derivative vanishes 
at the midpoint of the same interval, Le., at 7 = 1/2. Hence, the maximum 
value of 8'(7), 8~ax' is readily found as 

8~ax = S' (~) = 185 (5.15) 

and hence, the maximum value of the jth joint rate takes on the value 

. 15(0[ - OJ) 
(Oj)max = 8T (5.16) 

which becomes negative, and hence, a local minimum, if the difference in 
the numerator is negative. The values of 7 at which the second derivative 
attains its extreme values are likewise determined. The third derivative 
vanishes at two intermediate points 71 and 72 of the interval 0 ~ 7 ~ 1, 
namely, at 

1v'3 
712 = - ±-, 2 6 (5.17) 

and hence, the maximum value of 8" (7) is readily found as 

11 _" (~_ v'3) _ 1Ov'3 
smax - 8 2 6 - 3 (5.18) 
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while the minimum is given as 

" ,,(1 J3) 
smin = S 2" + (3 3 

(5.19) 

Therefore, the maximum value of the joint acceleration is as shown below: 

(5.20) 

Likewise, 
S~ax = SIII(O) = slII(1) = 60 

and hence, 

(5.21) 

Thus, eqs.(5.16) and (5.20) allow us to determine T for each joint so that 
the joint rates and accelerations lie within the allowed limits. Obviously, 
since the motors of different joints are different, the minimum values of T 
allowed by the joints will be, in general, different. Of those various values 
of T, we will, of course, choose the largest one. 

5.3.2 A 4-5-6-7 Interpolating Polynomial 

Now, from eq.(5.14c), it is apparent that the third derivative of the normal 
polynomial does not vanish at the end points of the interval of interest. This 
implies that the third time derivative of 8j (t), also known as the joint jerk, 
does not vanish at those ends either. It is desirable to have this derivative 
as smooth as the first two, but this requires us to increase the order of the 
normal polynomial. In order to attain the desired smoothness, we will then 
impose two more conditions, namely, 

Sill (0) = 0, Sill (1) = 0 (5.22) 

We now have eight conditions on the normal polynomial, which means 
that the polynomial degree should be increased to seven, namely, 

whose derivatives are readily determined as shown below: 

S'(T) = 7aT6 + 6bT5 + 5CT4 + 4dT3 + 3eT2 + 2fT + 9 

s" (T) = 42aT5 + 30bT4 + 20CT3 + 12dT2 + 6eT + 2f 

SIII(T) = 21OaT4 + 120bT3 + 60CT2 + 24dT + 6e 

(5.23a) 

(5.23b) 

(5.23c) 

(5.23d) 

The first three conditions of eq.(5.7) and the first condition of eq.(5.22) 
readily lead to 

e=f=g=h=O (5.24) 
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Furthermore, the last three conditions of eq.(5.7) and the second condition 
of eq.(5.22) lead to faur linear equations in four unknowns, namely, 

a+b+c+d=1 

7 a + 6b + 5c + 4d = 0 

42a + 30b + 20c + 12d = 0 

210a + 120b + 60c + 24d = 0 

and hence, we obtain the solution 

a = -20, b = 70, c = -84, 

the desired polynomial thus being 

d=35 

(5.25a) 

(5.25b) 

(5.25c) 

(5.25d) 

(5.26) 

(5.27) 

which is a 4-5-6-7 polynomial. This polynomial and its first three deriva
tives, normalized to fall within the range (-1,1), are plotted in Fig. 5.3. 
Note that the 4-5-6-7 polynomial is similar to that of Fig. 5.2, except that 
the third derivative of the former vanishes at the extremes of the interval of 
interest. As we will presently show, this smoothness has been obtained at 
the expense of higher maximum values of the first and second derivatives. 
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FIGURE 5.3.4-5-6-7 interpolating polynomial and its derivatives. 
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We now determine the maximum values of the velocity and acceleration 
produced with this motion. To this end, we display below the first three 
derivatives, namely, 

8'(7) = -14076 + 42075 - 42074 + 14073 

8"(7) = -84075 + 210074 - 168073 + 42072 

8 111 ( 7) = -420074 + 840073 - 504072 + 8407 

(5.28a) 

(5.28b) 

(5.28c) 

The first derivative attains its extreme values at points where the second 
derivative vanishes. Upon zeroing the latter, we obtain 

(5.29) 

which clearly contains a double root at 7 = O. Moreover, the cubic polyno
mial in the parentheses above admits one real root, namely, 7 = 1/2, which 
yields the maximum value of 8'(7), i.e., 

, , (1) 35 
8max = 8 "2 = 16 (5.30) 

whence the maximum value of the jth joint rate is found as 

(5.31) 

Likewise, the points of maximum joint acceleration are found upon ze
roing the third derivative of 8(7), namely, 

8"'(7) = -420074 + 840073 - 504072 + 8407 = 0 (5.32) 

or 

7(7 - 1)(572 - 57 + 1) = 0 (5.33) 

which yields, in addition to the two end points, two intermediate extreme 
points, namely, 

1J5 
712 = - ±-, 2 10 (5.34) 

and hence, the maximum value of acceleration is found to be 

" _"( ) _ 84J5 8max - 8 71 - 25 (5.35) 

the minimum occurring at 7 = 72, with 8~in = -8~ax' The maximum value 
of the jth joint acceleration is thus 

(5.36) 
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which becomes a minimum if the difference in the numerator is negative. 
Likewise, the zeroing of the fourth derivative leads to 

whose three roots are 

1- J375 
2 

and hence, 

Le., 

111 = Sill (1 ± J375) = 42 smax 2 ' '''. = 111(0 5) = _ 105 smm s. 2 

105 
max{ls"'(T)I} = - == s,!:! 

T 2 
(5.37) 

As in the case of the fifth-order polynomial, it is possible to use the 
foregoing relations to determine the minimum time T during which it is 
possible to perform a given PPO while observing the physical limitations 
of the motors. 

5.4 Cycloidal Motion 

An alternative motion that pro duces zero velocity and acceleration at the 
ends of a finite interval is the cycloidal motion. In normal form, this motion 
is given by 

1 . 
S(T) = T - 27f sm 27fT 

its derivatives being readily derived as 

S' ( T) = 1 - cos 27fT 

S" (T) = 27f sin 27fT 

Sill (T) = 47f2 cos 27fT 

(5.38a) 

(5.38b) 

(5.38c) 

(5.38d) 

The cycloidal motion and its first three time-derivatives, normalized to 
fall within the range (-1,1), are shown in Fig. 5.4. Note that while this 
motion, indeed, has zero velo city and acceleration at the ends of the interval 
o ::; T ::; 1, its jerk is nonzero at these points and hence, exhibits jump 
discontinuities at the ends of that interval. 

When implementing the cycloidal motion in PPO, we have, for the jth 
joint, 

(5.39a) 
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FIGURE 5.4. The normal cycloidal motion and its time derivatives. 

. ()F _ ()I 
Oj(t) = J T J S'(T) (5.39b) 

.. ()F _ ()I 
()j(t) = J T2 J S"(T) (5.39c) 

Moreover, as the reader can readily verify, under the assumption that ()J > 
()f, this motion attains its maximum velocity at the center of the interval, 
Le., at T = 0.5, the maximum being 

S~ax = s'(0.5) = 2 

and hence, 

(5.40a) 

Likewise, the jth joint acceleration attains its maximum and minimum 
values at T = 0.25 and T = 0.75, respectively, i.e., 

s;;'ax = s"(0.25) = s"(0.75) = 27r (5.40b) 

and hence, 

.. 27r F I 
(Oj)max= T2(Oj -Oj)' (5.40c) 
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Moreover, SIll(T) attains its extrema at the ends of the interval, Le., 

S:;:ax = Sill (0) = s'" (1) = 47[2 (5.41) 

and hence, 

(5.42) 

Thus, if motion is constrained by the maximum speed delivered by the 
motors, the minimum time Tj for the jth joint to produce the given PPO 
can be readily determined from eq.(5.40a) as 

(5.43) 

and hence, the minimum time in which the operation can take place can 
be readily found as 

T min = 2 max {er - eI } 
J (ej)max 

(5.44) 

If joint-acceleration constraints are imposed, then a similar procedure can 
be followed to find the minimum time in which the operation can be real
ized. As a matter of fact, rather than maximum joint accelerations, maxi
mum joint torques are to be respected. How to determine these torques is 
studied in detail in Chapter 6. 

5.5 Trajectories with Via Poses 

The polynomial trajectories discussed above do not allow the specifica
tion of intermediate Cartesian poses of the EE. All they guarantee is that 
the Cartesian trajectories prescribed at the initial and final instants are 
met. One way of verifying the feasibility of the Cartesian trajectories thus 
synthesized was outlined above and consists of using a graphics system, 
preferably with animation capabilities, to produce an animated rendering 
of the robot motion, thereby allowing for verification of collisions. If the 
latter occur, we can either try alternative branches of the inverse kine
matics solutions computed at the end poses or modify the trajectory so 
as to eliminate collisions. We discuss below the second approach. This is 
done with what are called via poses, i.e., poses of the EE in the Cartesian 
space that lie between the initial and the final poses, and are determined 
so as to avoid collisions. For example, if upon approaching the final pose 
of the PPO, the manipulator is detected to interfere with the surface on 
which the workpiece is to be placed, a via pose is selected dose to the final 
point so that at this pose, the workpiece is far enough from the surface. 
From inverse kinematics, values of the joint variables can be determined 
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that correspond to the aforementioned via poses. These values can now 
be regarded as points on the joint-space trajectory and are hence called 
via points. Obviously, upon plotting each joint variable vs. time, via points 
appear as points on those plots as weIl. 

The introduction of via points in the joint-space trajectories amounts to 
an increase in the number of conditions to be satisfied by the desired tra
jectory. For example, in the case of the polynomial trajectory synthesized 
for continuity up to second derivatives, we can introduce two via points by 
requiring that 

(5.45) 

where Tl, T2, SI, and S2 depend on the via poses prescribed and the instants 
at which these poses are desired to occur. Hence, SI and S2 differ from joint 
to joint, although the occurrence instants Tl and T2 are the same for all 
joints. Thus, we will have to determine one normal polynomial for each 
joint. Furthermore, the ordinate values SI and S2 of the normal polynomial 
at via points are determined from the corresponding values of the joint 
variable determined, in turn, from given via poses through inverse kine
matics. Once the via values of the joint variables are known, the ordinate 
values of the via points of the normal polynomial are found from eq.(5.6a). 
Since we have now eight conditions to satisfy, namely, the six conditions 
(5.7) plus the two conditions (5.45), we need a seventh-order polynomial, 
i.e., 

(5.46) 

Again, the first three conditions of eq.(5.7) lead to the vanishing of the 
last three coefficients, i.e., 

!=g=h=O (5.47) 

Further , the five remaining conditions are now introduced, which leads to 
a system of five linear equations in five unknowns, namely, 

a+b+c+d+e=1 

7 a + 6b + 5c + 4d + 3e = 0 

42a + 30b + 20c + 12d + 6e = 0 
7 6b 5 4d 3 Tl a + Tl + Tl C + Tl + Tl e = SI 

TJa+T~b+T~C+Tid+Tie = S2 

(5.48a) 

(5.48b) 

(5.48c) 

(5.48d) 

(5.48e) 

where Tb T2, SI, and S2 are all data. For example, if the via poses occur at 
10% and 90% of T, we have 

Tl = 1/10, T2 = 9/10 (5.48f) 
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the polynomial coefficients being found as 

a = 100(12286 + 1250081 - 1250082)/729 

b = 100(-38001 - 4875081 + 3875082)/729 

c = (1344358 + 237500081 - 137500082)/243 

d = (-1582435 - 462500081 + 162500082) /729 

e = 10(12159 + 11250081 - 1250082)/729 

(5.49a) 

(5.49b) 

(5.49c) 

(5.49d) 

(5.4ge) 

The shape of each joint trajectory thus depends on the values of 81 and 82 
found from eq.(5.6a) for that trajectory. 

5.6 Synthesis of PPO Using Cubic Splines 

When the number of via poses increases, the foregoing approach may be
come impractical, or even unreliable. Indeed, forcing a trajectory to pass 
through a number of via points and meet end point conditions is equivalent 
to interpolation. We have seen that an increase in the number of condi
tions to be met by the normal polynomial amounts to an increase in the 
degree of this polynomial. Now, finding the coefficients of the interpolat
ing polynomial requires solving a system of linear equations. As we saw in 
Section 4.9, the computed solution, when solving a system of linear equa
tions, is corrupted with a relative roundoff error that is roughly equal to 
the relative roundoff error of the data multiplied by an amplification fac
tor that is known as the condition number of the system matrix. As we 
increase the order of the interpolating polynomial, the associated condi
tion number rapidly increases, a fact that numerical analysts discovered 
some time aga (Kahaner, Moler, and Nash, 1989). In order to cope with 
this problem, orthogonal polynomial8, such as those bearing the names of 
Chebyshev, Laguerre, Legendre, and so on, have been proposed. While or
thogonal polynomials alleviate the problem of a large condition number, 
they do this only up to a certain extent. As an alternative to higher-order 
polynomials, spline junctions have been found to offer more robust interpo
lation schemes (Dierckx, 1993). Spline functions, or splines, for brevity, are 
piecewise polynomials with continuity properties imposed at the supporting 
points. The latter are those points at which two neighboring polynomials 
join. 

The attractive feature of splines is that they are defined as a set of 
rather lower-degree polynomials joined at a number of supporting points. 
Moreover, the matrices that arise from an interpolation problem associated 
with a spline function are such that their condition number is only slightly 
dependent on the number of supporting points, and hence, splines offer 
the possibility of interpolating over a virtually unlimited number of points 
without producing serious numerical conditioning problems. 
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Below we expand on periodic cubic splines, for these will be shown to be 
specially suited for path planning in robotics. 

A cubic spline function s(x) connecting N points Pk (Xk, Yk), for k = 
1,2, ... , N, is a function defined piecewise by N - 1 cubic polynomials 
joined at the points Pk, such that S(Xk) = Yk. Furthermore, the spline 
function thus defined is twice differentiable everywhere in Xl :::; X :::; XN. 
Hence, cubic splines are said to be C2 functions, Le., to have continuous 
derivatives up to the second order. 

Cubic splines are optimal in the sense that they minimize a functional, 
Le., an integral defined as 

subject to the constraints 

S(Xk) = Yk, k= 1, ... ,N 

where Xk and Yk are given. The aforementioned optimality property has 
a simple kinematic interpretation: Among all functions defining a motion 
so that the plot of this function passes through a set of points PI(Xl, SI), 
P2(X2, S2), ... , PN(XN, SN) in the x-s plane, the cubic spline is the one 
containing the minimum acceleration magnitude. In fact, F, as given above, 
is the square of the Euclidean norm (Halmos, 1974) of s"(x), i.e., F turns 
out to be a measure of the magnitude of the acceleration of a displacement 
program given by s(x), if we interpret s as displacement and X as time. 

Let Pk(Xk, Yk) and Pk+l(Xk+l, Yk+d be two consecutive supporting 
points. The kth cubic polynomial Sk(X) between those points is assumed 
to be given by 

Sk(X) = Ak (x - Xk)3 + Bk (x - Xk)2 + Ck (x - Xk) + Dk (5.50a) 

for Xk :::; x :::; Xk+l' Thus, for the spline s(x), 4(N - 1) coefficients A k, Bk, 
C k , Dk , for k = 1, ... ,N - 1, are to be determined. These coefficients will 
be computed presently in terms of the given function values {sdf and 
the second derivatives of the spline at the supporting points, {s%(xk)}f, 
as explained below: 

We will need the first and second derivatives of Sk(X) as given above, 
namely, 

S~(X) = 3Ak(x - xkf + 2Bk(x - Xk) + Ck 

s%(x) = 6Ak(x - Xk) + 2Bk 

whence the relations below follow immediately: 

1 " Bk = "2 Sk 

Ck = s~ 
Dk = Sk 

(5.50b) 

(5.50c) 

(5.51a) 

(5.51b) 

(5.51c) 
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where we have used the abbreviations 

() '- '( ) Sk == S Xk, sk = S Xk , (5.52) 

Furthermore, let 
(5.53) 

From the above relations, we have express ions for coefficients Bk and D k in 
terms of s% and Sk, respectively, but the expression for Ck is given in terms 
of s~. What we would like to have are similar express ions for A k and Ck , 

i.e., in terms of Sk and s%. The relations sought will be found by imposing 
the continuity conditions on the spline function and its first and second 
derivatives with respect to x at the supporting points. These conditions 
are, then, for k = 1, 2, ... , N - 1, 

sk(Xk+d = Sk+l 

s~(xk+d = s~+l 
"( ) " Sk Xk+l = sk+l 

(5.54a) 

(5.54b) 

(5.54c) 

Upon substituting S%(Xk+l), as given by eq.(5.50c), into eq.(5.54c), we 
obtain 

6Ak~Xk + 2Bk = 2Bk+l 

but from eq.(5.51a), we have already an expression for Bk, and hence, one 
for B k +1 as weIl. Substituting these two express ions in the above equation, 
we obtain an expression for A k , namely, 

(5.54d) 

Furthermüre, ifwe substitute Sk(Xk+d, as given by eq.(5.50a), into eq.(5.54a), 
we übtain 

Ak(~Xk)3 + Bk(~xk)2 + Ck~Xk = Sk+l 

But we al ready have values for A k and Bk from eqs.(5.54d) and (5.51a), re
spectively. Upon substituting these values in the foregüing equation, we ob
tain the desired expression für Ck in terms of function and second-derivative 
values, i.e., 

(5.54e) 

In summary, then, we now have expressiüns für aIl fOUf cüefficients of the 
kth pülynomial in terms of function and second-derivative values at the 
supporting points, namely, 

(5.55a) 

(5.55b) 
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with 

(5.55c) 

(5.55d) 

(5.55e) 

Furthermore, from the requirement of continuity in the first derivative, 
eq.(5.54b), after substitution of eq.(5.50b), one obtains 

3Ak(~Xk)2 + 2Bk~Xk + C k = Ck+l 

or if we shift to the previous polynomials, 

3Ak_l(~Xk_l)2 + 2Bk-l~Xk-l + C k- 1 = C k 

Now, if we substitute expressions (5.55a-c) in the above equation, a linear 
system of N - 2 simultaneous equations for the N unknowns {s%}f is 
obtained, namely, 

for k = 2, ... ,N - l. 
Further, let s be the N-dimensional vector whose kth component is Sk, 

with vector s" being defined likewise, i.e., 

S " - [" S" JT - SI'···' N (5.57) 

The relations hip between sand s" of eq.(5.56) can then be written in 
vector form as 

As" = 6Cs 

where A and C are (N - 2) x N matrices defined as: 

and 

C= 

o 
o 

20:1,2 0:2 0 
0:2 20:2,3 0:3 

o 
o o 

ßN'" -ßN11I,N" 

ßN" 

o 
o 

O:N" 

20:N",Nf 

o 
o 

ßN" 
-ßNIf,NI 

(5.58a) 

(5.58b) 

11 (5.58c) 
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while for i, j, k = 1, ... ,N - 1, 

Ük == f1xk, Üi,j == Üi + Üj, 

ßk == 1/ü k, ßi,j == ßi + ßj 

and 

N' == N -1, N" == N - 2, N'" == N - 3 

(5.58d) 

(5.58e) 

(5.58f) 

Thus, two additional equations are needed to render eq.(5.58a) a deter
mined system. The additional equations are derived, in turn, depending 
upon the class of functions one is dealing with, which thus gives rise to 
various types of splines. For example, if s7 and s'fv are defined as zero, 
then one obtains natural cubic splines, the name arising by an analogy 
with beam analysis. Indeed, in beam theory, the boundary conditions of 
a simply-supported beam establish the vanishing of the bending moments 
at the ends. From beam theory, moreover, the bending moment is propor
tional to the second derivative of the elastica, or neutral axis, of the beam 
with respect to the abscissa along the beam axis in the undeformed con
figuration. In this case, vector s" becomes of dimension N - 2, and hence, 
matrix A becomes, correspondingly, of (N - 2) x (N - 2), namely, 

2Ül,2 Ü2 0 0 
Ü2 2Ü2,3 Ü3 0 

A= (5.59) 

0 aN'" 2ÜN"',N" ON" I 
0 0 ÜN" 2ÜN",N' 

On the other hand, if one is interested in periodic functions, which is often 
the case when synthesizing pick-and-place motions, then the conditions 
SI = SN, si = s'tv, s7 = s'fv are imposed, thereby producing periodic cubic 
splines. The last of these conditions is used to eliminate one unknown in 
eq.(5.58a), while the second condition, namely the continuity of the first 
derivative, is used to add an equation. We have, then, 

(5.60) 

which can be written, using eq.(5.54b), as 

(5.61) 

Upon substituting s'tv-l (XN), as given by eq.(5.50b), into the above equa
tion, we obtain 

(5.62) 
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Now we use eqs.(5.55a-c) and simplify the expression thus resulting, which 
leads to 

thereby obtaining the last equation required to solve the system of equa
tions given by eqs.(5.58a-c). We thus have (N - 1) independent equations 
to solve for (N - 1) unknowns, namely, s%, for k = 1, ... , N - 1, s'Jv being 
equal to s~. Expressions for matrices A and C, as applicable to periodic 
cubic splines, are given in eqs.(9.59a & b). 

While we focused in the above discussion on cubic splines, other types 
of splines could have been used. For example, Thompson and Patel (1987) 
used B-splines in robotics trajectory planning. 

Example 5.6.1 (Approximation of a 4-5-6-7 polynomial with a cubic 
spline) Find the cubic spline that interpolates the 4-5-6-7 polynomial of 
Fig. 5.3 with N + 1 equally-spaced supporting points and plot the interpo
lation error for N = 3 and N = 10. 

Solution: Let us use a natural spline, in which case the se co nd derivative at 
the end points vanishes, with vector s" thus losing two components. That is, 
we now have only N -1 unknowns { s% } f" -1 to determine. Correspondingly, 
matrix Athen loses its first and last columns and hence, becomes a square 
(N - 1) x (N - 1) matrix. Moreover, 

1 
ßXk = N' k= 1, ... ,N 

and matrices A and C become, correspondingly, 

4 1 0 0 
1 4 1 0 

A=~ 
N 

0 1 4 1 
0 0 1 4 

and 
1 -2 1 0 0 0 
0 1 -2 1 0 0 

C=N 

0 0 1 -2 1 0 
0 0 0 1 -2 1 

the vector of second derivatives at the supporting points, s", then being 
readily obtained as 

s" = 6A -lCS 
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FIGURE 5.5. Errors in the approximation of a 4-5-6-7 polynomial with a natural 
cubic spline, using four supporting points. 

With the values of the second derivatives at the supporting points known, 
the calculation of the spline coefficients A k , Bk, Ck , and D k , for k = 

1, ... , N, is now straightforward. Let the interpolation error, e(x), be de
fined as e(x) == s(x) - p(x), where s(x) is the interpolating spline and p(x) 
is the given polynomial. This error and its derivatives e' (x), eil (x), and 
e"'(x) are plot ted in Figs. 5.5 and 5.6 for N = 3 and N = 10, respectively. 
What we observe is an increase of more than one order of magnitude in the 
error as we increase the order of the derivative by one. Thus, the order of 
magnitude of acceleration errors is usually higher than two orders of mag
nitude above the displacement errors, a fact that should not be overlooked 
in applications. 
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FIGURE 5.6. Errors in the approximation of a 4-5-6-7 polynomial with a natural 
cubic spline, using eleven supporting points. 



www.manaraa.com

6 
Dynamics of Serial Robotic 
Manipulators 

6.1 Introduction 

The main objectives of this chapter are (i) to devise an algorithm for the 
real-time computed torque control and (ii) to derive the system of second
order ordinary differential equations (ODE) governing the motion of an 
n-axis manipulator. We will focus on serial manipulators, the dynamics 
of a much broader class of robotic mechanical systems, namely, parallel 
manipulators and mobile robots, being the subject of Chapter 10. Moreover, 
we will study mechanical systems with rigid links and rigid joints and 
will put aside systems with flexible elements, which pertain to a more 
specialized realm. 

6.2 Inverse vs. Forward Dynamics 

The two basic problems associated with the dynamics of robotic mechani
cal systems, namely, the inverse and the forward problems, are thoroughly 
discussed in this chapter. The relevance of these problems cannot be over
stated: the former is essential for the computed-torque control of robotic 
manipulators, while the latter is required for the simulation and the real
time feedback control of the same systems. Because the inverse problem 
is purely algebraic, it is conceptually simpler to grasp than the forward 
problem, and hence, the inverse problem will be discussed first. Moreover, 
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the inverse problem is also computationally simpler than the forward prob
lem. In the inverse problem, a time-history of either the Cartesian or the 
joint coordinates is given, and from knowledge of these histories and the 
architecture and inertial parameters of the system at hand, the torque or 
force requirements at the different actuated joints are determined as time
histories as weil. In the forward problem, current values of the joint coor
dinates and their first time-derivatives are known at a given instant, the 
time-histories of the applied torques or forces being also known, along with 
the architecture and the inertial parameters of the manipulator at hand. 
With the aforementioned data, the values of the joint coordinates and their 
time-derivatives are computed at a later sampling instant by integration of 
the underlying system of nonlinear ordinary differential equations. 

The study of the dynamics of systems of multiple rigid bodies is classical, 
but up until the advent of the computer, it was limited only to theoreti
cal results and a reduced number of bodies. First Uicker (1965) and then 
Kahn (1969) produced a method based on the Euler-Lagrange equations 
of mechanical systems of rigid bodies that they used to simulate the dy
namical behavior of such systems. A breakthrough in the development of 
algorithms for dynamics computations was reported by Luh, Walker, and 
Paul (1980), who proposed a recursive formulation of multibody dynamics 
that is applicable to systems with serial kinematic chains. This formula
tion, based on the Newton-Euler equations of rigid bodies, allowed the 
calculation of the joint torques of a six-revolute manipulator with only 800 
multiplications and 595 additions, a tremendous gain if we consider that the 
straightforward calculation of the Euler-Lagrange equations for the same 
type of manipulator involves 66,271 multiplications and 51,548 additions, 
as pointed out by Hollerbach (1980). In the aforementioned reference, a re
cursive derivation of the Euler-Lagrange equations was proposed whereby 
the computational complexity was reduced to only 2,195 multiplications 
and 1,719 additions. 

The aforementioned results provoked a discussion on the merits and de
merits of each of the Euler-Lagrange and the Newton-Euler formulations. 
Silver (1982) pointed out that since both formulations are equivalent, they 
should lead to the same computational complexity. In fact, Silver showed 
how to derive the Euler-Lagrange equations from the Newton-Euler formu
lation by following an approach first introduced by Kane (1961) in connec
tion with nonholonomic systems. Kane and Levinson (1983) then showed 
how Kane's equations can be applied to particular robotic manipulators and 
arrived at lower computational complexities. They applied the said equa
tions to the Stanford Arm (Paul, 1981) and computed its inverse dynamics 
with 646 multiplications and 394 additions. Thereafter, Khalil, Kleinfinger, 
and Gautier (1986) proposed a condensed recursive Newton-Euler method 
that reduced the computational complexity to 538 multiplications and 478 
additions, for arbitmry architectures. Further developments in this area, 
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summarized by Balafoutis and Patel (1991), have shown that the underly
ing computational complexity can be reduced to 489 multiplications and 
420 additions for the most general case of a six-revolute manipulator, i.e., 
without exploiting particular features of the manipulator geometry. Bal
afoutis and Patel based their algorithm on tensor analysis, whereby tensor 
identities are exploited to their fullest extent in order to reduce the number 
of operations involved. 

In this chapter, the inverse dynamics problem is solved with the well
known recursive Newton-Euler algorithm, while the direct dynamics prob
lem is handled with a novel approach, based on the reciprocity relations 
between the constraint wrenches and the feasible twists of a manipulator. 
This technique is developed with the aid of a modeling tool known as 
natural orthogonal complement, thoroughly discussed in Section 6.5. 

Throughout the chapter, we will follow a multibody system approach, 
which requires a review of the underlying fundamentals. 

6.3 Fundamentals of Multibody System Dynamics 

6.3.1 On Nomenclature and Basic Definitions 

We consider here a mechanical system composed of r rigid bodies and 
denote by Mi the 6 x 6 inertia dyad-see Section 3.8-of the ith body. 
Moreover, we let W i , already introduced in eq.(3.145), be the angular
velocity dyad of the same body. As pertaining to the case at hand, the said 
matrices are displayed below: 

[no 0] 
W i == O· 0 ' i = 1, ... ,r (6.1) 

where 1 and 0 denote the 3 x 3 identity and zero matrices, respectively, 
while ni and I i are the angular-velo city and the inertia matrices of the 
ith body, this last being defined with respect to the mass center Ci of this 
body. Moreover, the mass of this body is denoted by mi, whereas Ci and 
Ci denote the position and the velo city vectors of Ci. Furthermore, let t i 

denote the twist of the same body, the latter being defined in terms of 
the angular velocity vector Wi, the vector of Oi, and the velocity of Ci. 
The 6-dimensional momentum screw, Mi' is defined likewise. Furthermore, 
w;V and wf are defined as the working wrench and the nonworking con
straint wrench exerted on the ith body by its neighbors, in wh ich forces are 
assumed to be applied at Ci. We thus have, for i = 1, ... , r, 

(6.2) 
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where superscripted lli and f i stand, respectively, for the moment and the 
force acting on the ith body, the force being applied at the mass center Ci. 
Thus, whereas w J-V accounts for forces and moments exerted by both the 
environment and the actuators, including driving forces as wen as dissipa
tive effects, wf, whose sole function is to keep the links together, accounts 
for those forces and moments exerted by the neighboring links, which do 
not produce any mechanical work. Therefore, friction wrenches applied by 
the (i - l)st and the (i + l)st links onto the ith link are not included in 
wf; rather, they are included in wJ-V. 

Clearly, from the definitions of Mi, JLi' and ti, we have 

(6.3) 

Moreover, from eq.(3.173), 

(6.4) 

We now recall the Newton-Euler equations for a rigid body, namely, 

I . I W C 
iWi = -Wi X iWi + lli + lli 

.. fW fC 
mi Ci = i + i 

(6.5a) 

(6.5b) 

which can be written in compact form using the foregoing 6-dimensional 
twist and wrench arrays as weIl as the 6 x 6 inertia and angular-velo city 
dyads. We thus obtain the Newton-Euler equations of the ith body in the 
form 

(6.5c) 

6.3.2 The Euler-Lagrange Equations of Serial Manipulators 

The Euler-Lagrange dynamical equations of a mechanical system are now 
recaIled, and apply them to serial manipulators. Thus, the mechanical sys
tem at hand has n degrees of freedom, its n independent generalized COor
dinates being the n joint variables, which are stored in the n-dimensional 
vector (}. We thus have 

d (äT) äT 
dt äiJ - ä(} = l/J (6.6) 

where T is a scalar function denoting the kinetic energy of the system and l/J 
is the n-dimensional vector of generalized force. If some forces on the right
hand side stern from a potential V, we can, then decompose l/J into two 
parts, l/Jp and l/Jn' the former arising from V and termed the conservative 
force of the system; the latter is the nonconservative force l/Jn' That is, 

(6.7) 



www.manaraa.com

6.3 Fundamentals of Multibody System Dynamics 217 

the above Euler-Lagrange equations thus becoming 

(6.8) 

where L is the Lagrangian of the system, defined as 

L=T-V (6.9) 

Moreover, the kinetic energy of the system is simply the sum of the kinetic 
energies of all the r links. Recalling eq.(3.150), which gives the kinetic 
energy of a rigid body in terms of 6-dimensional arrays, one has 

(6.10) 

whereas the vector of nonconservative generalized forces is given by 

(6.11) 

in which rrA and ~ denote the power supplied to the system and the 
Rayleigh dissipation function, or for brevity, the dissipation function of the 
system. The first of these items is discussed below; the latter is only outlined 
in this section but is discussed extensively in Section 6.8. First, the wrench 
wr' is decomposed into two parts, wt and wf, the former being the wrench 
supplied by the actuators and the latter being the wrench that arises from 
viscous and Coulomb friction, the gravity wrench being not needed he re 
because gravity effects are considered in the potential V(O). We thus call 
wt the active wrench and wf the dissipative wrench. Here, the wrenches 
supplied by the actuators are assumed to be prescribed functions of time. 
Moreover, these wrenches are supplied by single-dof actuators in the form of 
forces along a line of action or moments in a given direction, both line and 
direction being fixed to the two bodies that are coupled by an active joint. 
Hence, the actuator-supplied wrenches are dependent on the posture of the 
manipulator as well, but not on its twist. That is, the actuator wrenches are 
functions of both the vector of generalized coordinates, or joint variables, 
and time, but not ofthe generalized speeds, or joint-rates. Forces dependent 
on the latter to be considered here are assumed to be all dissipative. As a 
consequence, they can be readily incorporated into the mathematical model 
at hand via the dissipation function, to be discussed in Section 6.8. Note 
that feedback control schemes require actuator forces that are functions 
not only of the generalized coordinates, but also of the generalized speeds. 
These forces or moments are most easily incorporated into the underlying 
mathematical model, once this model is derived in the state-variable space, 
i.e., in the space of generalized coordinates and generalized speeds. 
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Thus, the power supplied to the ith link, IIf, is readily computed as 

(6.12a) 

Similar to the kinetic energy, then, the power supplied to the overall 
system is simply the sum of the individual powers supplied to each link, 
and expressed as in eq.(6.12a), i.e., 

(6.12b) 

Further definitions are now introduced. These are the 6n-dimensional 
vectors of manipulator twist, t; manipulator momentum, J.L; manipulator 
constraint wrench, w C ; manipulator active wrench, w A ; and manipulator 
dissipative wrench, w D . Additionally, the 6n x 6n matrices of manipulator 
mass, M, and manipulator angular velocity, W, are also introduced below: 

M = diag ( MI, ... , Mn ), 

It is now apparent that, from definitions (6.13a & 6.13b) and relation 
(6.3), we have 

J.L = Mt (6.14) 

Moreover, from definitions (6.1), 

j.L = Mt+ WMt (6.15) 

With the foregoing definitions, then, the kinetic energy of the manipulator 
takes on a simple form, namely, 

(6.16) 

which is a quadratic form in the system twist. Moreover, the twists are 
linear express ions in the velo city variables Ci and Wi. As a consequence, 
the twists are bound to be linear in the vector of generalized speeds, or 
joint-rates, 8. Therefore, the kinetic energy is bound to be a quadratic 
form in the joint-rates, i.e., a symmetrie, positive-definite n x n matrix I 
exists, independent of the joint rates, although in general, dependent on 
the generalized coordinates, or joint variables, fJ, such that 

T = ~8T I(fJ)8 + h(fJ, tf 8 + To(t) (6.17) 
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the n x n matrix I being known as the generalized inertia matrix. We will 
study the inertia matrix in greater detail when deriving the Euler-Lagrange 
equations of a manipulator using the natural orthogonal eomplement in 
Seetion 6.6. What we ean readily eonclude is that the kinetic energy be
ing intrinsically positive, the generalized inertia matrix is positive-definite. 
Obviously, I is symmetrie as weIl. Moreover, note that one term linear in 
the joint rates and one independent of these are included in the above form 
of T, the latter aeeounting for motions of the robotic system that are not 
affeeted by the dynamies of the system. These motions would oeeur, for 
example, if a robot were mounted on a spaee station rotating at a uniform 
speed about an axis fixed in an inertial frame. This rotation would be in
tended to provide an aeeeleration field emulating gravity. We will eonsider 
in this ehapter mainly manipulators mounted on an inertial base, whieh are 
eharaeterized by a homogeneous kinetie energy, i.e., by h = 0 and To = 0 
in eq.(6.17). Henee, the kinetie energy will be assumed of the form 

whenee it is apparent that 

a2 
1(0) = ~(T) 

ao 

(6.18) 

(6.19) 

whieh means that the n x n generalized inertia matrix is the Hessian matrix 
of the kinetie energy with respeet to the veetor of generalized speed. 

Furthermore, the Euler-Lagrange equations ean be written in the form 

(6.20a) 

Now, from the form ofT given in eq.(6.18), the partial derivatives appearing 
in the foregoing equation take the forms derived below: 

and henee, 

a~ = I(O)iJ 
ao 

d (aT) ... .. 
dt aiJ =1(0)0+1(0,0)0 (6.20b) 

Moreover, in order to ealculate the seeond term of the left-hand side of 
eq.(6.20a), we express the kinetie energy in the form 

T = ~p(O, iJfiJ (6.20e) 

where p(O, iJ) is the generalized momentum of the manipulator, defined as 

p( 0, iJ) == I( O)iJ (6.20d) 
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Hence, 

(6.20e) 

or 

(6.20f) 

the Euler-Lagrange equations thus taking on the alternative form 

.. . .. 1 8(10) . 8V 
[ 

'] T 1(0)0 + 1(0,0)0 - 2 80 0 + 80 = 4>n (6.21) 

Example 6.3.1 (Euler-Lagrange equations of a planar manipulator) Con
si der the manipulator 0/ Fig. 6.1, with links designed so that their mass 
centers, Cl, C2 , and C3 , are located at the midpoints 0/ segments 0 10 2 , 

0 20 3, and 03P, respectively. Moreover, the ith link has a mass mi and a 
centroidal moment 0/ inertia in a direction normal to the plane 0/ motion 
Ii , while the joints are actuated by motors delivering torques Tl, T2, and T3, 

the lubricant 0/ the joints producing dissipative torques that we will neglect 
in this model. Under the assumption that gravity acts in the direction 0/ 
- Y, find the associated Euler-Lagrange equations. 

Solution: Here we recall the kinematic analysis of Section 4.8 and the def
initions introduced therein for the analysis of planar motion. In this light, 
all vectors introduced below are 2-dimensional, the scalar angular velocities 
of the links, Wi, for i = 1, 2, 3, being 

Wl =ih, W2 = Öl + Ö2 , W3 = Öl + Ö2 + Ö3 

Moreover, the velocities of the mass centers are 

1 . 
Cl = 20lEal 

. 1·· 
C2 = OlEal + "2(01 + (2)Ea2 

. .. 1··· 
C3 = OlEal + (01 + (2)Ea2 + 2(01 + O2 + (3)Ea3 

the kinetic energy then becoming 

3 

T = ~ L(mil!cil!2 + Iiw:) 
1 

The squared magnitudes of the mass-center velocities are now computed 
using the expressions derived above. After simplifications, these yield 
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p(x,y) 

FIGURE 6,1. A planar manipulator. 

• 2 2 '2 1 2 '2 "'2 '2 " II c 211 = a1(}1 + 4"a2((}1 + 2(}1(}2 + (}2) + ala2 COS(}2((}1 + (}1(}2) 

• 2 2 '2 2 '2 " '2 II c 311 = a1(}1 + a2 ((}1 + 2(}1(}2 + (}2) 

1 2 '2 '2 '2 " " " 
+4"a3((}1 + (}2 + (}3 + 2(}1(}2 + 2(}1(}3 + 2(}2(}3) 

'2 " '2 " " 
+ 2ala2 COS (}2((}1 + (}1(}2) + ala3 COS((}2 + (}3)((}1 + (}1(}2 + (}1(}3) 

'2 '2 " " " 
+a2a3 COS(}3((}1 + (}2 + 2(}1(}2 + (h(}3 + (}2(}3) 

The kinetic energy of the whole manipulator thus becomes 

with coefficients I ij , for i = 1, 2, 3, and j = i to 3 being the distinct entries 
of the 3 x 3 matrix of generalized inertia of the system, These entries are 
given below: 
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2 2 1 2 +m3(al + a2 + 4a3 + 2ala2C2 + ala3C23 + a2a3C3) 

lt2 == h +h + ~ [m2 (~a~ +ala2C2) 

+ m3 (2a~ + ~a~ + 2ala2C2 + ala3c23 + 2a2a3C3) ] 

lt3 == 13 + ~ (~a~ + ala3C23 + a2a3C3) 

123 == 13 + ~m3 (~a~ + a2a3C3 ) 

1 2 
133 == 13 + 4 m3a3 

where Ci and Cij stand for COS(}i and COS((}i + (}j), respectively. From the 
foregoing expressions, it is apparent that the generalized inertia matrix is 
not a function of (}l, which is only natural, for if the second and third joints 
are locked while leaving the first one free, the whole manipulator becomes 
a single rigid body pivoting about point 0 1 , Now, the polar moment of 
inertia of a rigid body in planar motion about a fixed point is constant, 
and hence, the first joint variable should not affect the generalized inertia 
matrix. 

Furthermore, the potential energy of the manipulator is computed as the 
sum of the individual link potential energies, i.e., 

V = ~mlgal sin(}l + m2g [al sin(}l + ~a2 sin((}l + (}2)] 

+m3g [al sin BI + a2 sin((}l + (2) + ~a3 sin( BI + B2 + (3)] 

while the total power delivered to the manipulator takes the form 

rr = Tl ih + Tl)2 + T3Ö3 

We now proceed to compute the various terms in eq.(6.21). We already 
have 1(0), but we do not have, as yet, its time-derivative. However, the 
entries of i are merely the time-derivatives of the entries of I. From the 
above expressions for these entries, their time-rates of change are readily 
calculated, namely, 

jll = -m2al a2s2Ö2 - m3[2ala2 s2Ö2 + ala3s23(Ö2 + (3) + a2a3s3Ö3] 
. 1 . . .. . 

112 = "2 {-m2 al a2s2(}2 - m3[2ala2 s2(}2 + ala3s23((}2 + (}3) + 2a2a3s3(}3]} 

. 1 ., . 
lt3 = -"2m3[ala3s23((}2 + (}3) + a2 a3s3(}3] 
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i 22 = -m3a2a3siJ3 
. 1 . 
h3 = -"2m3a2a3s3{h 

i33 = 0 

with ,lij defined as sin(8i + 8j ). It should now be apparent that the time
rate ()f change of the generalized inertia matrix is independent of ih, as 
one should have expected, for this matrix is independent of 81. That is, 
if all joints but the first one are frozen, no matter how fast the first joint 
rotates, the manipulator moves as a single rigid body whose polar moment 
of inertia about 0 1 , the center of the first joint, is constant. As a matter of 
fact, 133 is constant for the same reason and i 33 hence vanishes. We have, 
then,1 

whose components, Li, for i = 1, 2, 3, are readily calculated as 

LI = -[m2ala2s2 + m3al(2a2s2 + a3 s23)]8182 - m3a3(als23 + a2 s3)8183 
1 '2' . -"2 [m2 al a2s2 + m3al(2a2s2 + a3 s23)]t92 - m3a3(al s23 + a2 s3)8283 

1 '2 
-"2m3a3(als23 + a2 s3)B3 

1 .. 
L2 = -"2 [m2 al a2s2 + m3al(2a2s2 + a3 s23)]t91 82 

1 . . .. 1 '2 
-"2m3a3(als23 + a2 s3)8183 - m3a2a3s38283 - "2m3a2a3s383 

1 .. 1 .. 1 . . 
L3 = -"2m3ala3s23(hf}3 - "2m3a3(als23 + a2 s3)f}1f}3 - "2m3a2a3s3f}2f}3 

The next term in the right-hand side of eq.(6.21) now requires the cal
culation of the partial derivatives of vector 18 with respect to the joint 
variables, which are computed below. Let 

8(liJ) = I' 
88 -

its entries being denoted by IIj . This matrix, in component form, is given 
by 

[
0 111 281 + h2 282 + h3 283 

I' = 0 h2:2~1 + I22:2~2 + I23:2~3 
o h3,281 + 123 ,282 + h3,283 

Il1,3~1 + h2,3~2 + h3'3~3l 
h2,381 + h2,382 + 123 ,383 
h3,381 + 123 ,382 + I33,ih 

1 t is the Greek letter iota and denotes a vector; according to our notation, its 
components are tl, t2, and t3. 
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with the shorthand notation Iij,k indicating the partial derivative of I ij 

with respect to (h. As the reader can verify, these entries are given as 

I~l = 0 

I~2 = -[m2a1a2s2 + m3(2a1a2s2 + a1 a3s23)]Ö1 
1 . 

-"2[m2a1a2s2 + m3(2a1a2s2 + a1 a3s23)]02 

1 . 
-"2m3a1a3s2383 

. 1 . 
I~3 = -m3(a1 a3s23 + a2a3s3)81 - "2m3(a1a3s23 + 2a2a3s3)82 

1 . 
-"2m3(a1a3s23 + a2a3s3)83 

I~l = 0 
1 . 

I~2 = -"2 [m2a 1a2s2 + m3(2a1a2s2 + a1 a3s23)]81 

1 .. 1 . 
I~3 = -"2m3(a1a3s23 + 2a2a3s3)81 - m3a2a3s382 - "2m3a2a3s383 

I~l = 0 
1 . 

I~2 = -"2m3a1a3s2381 

1 . 1 . 
I~3 = -"2m3(a1a3s23 + a2a3s3)81 - "2m3a2a3s382 

Now, we define the 3-dimensional vector "y below: 

its three components, li, for i = 1, 2, 3, being 

11 = 0 
'2 

12 = -[m2a1a2s2 + m3(2a1a2s2 + a1 a3s23)]Ol 

-[m2a1a2s2 + m3(2a1a2s2 + a1 a3s23)]Ö1Ö2 

-m3a1 a3s23Ö1 Ö3 
'2 .. 

13 = -m3(a1 a3s23 + a2a3s3)81 - m3(a1 a3s23 + 2a2a3s3)8182 
. . '2 .. 

-m3(a1a3s23 + a2a3s3)8183 - m3a2a3s383 - m3a2a3s38283 

We now turn to the computation of the partial derivatives of the potential 
energy: 

8V 1 1 1 
881 = "2m1ga1c1 + m2g(a1 c1 + "2a2c12) + m3g(a1 c1 + a2c12 + "2a3c123) 

8V 1 1 
882 = "2m2ga2 + m3g(a2c12 + "2a3c123) 
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The Euler-Lagrange equations thus reduce to 

.. .. .. 1 1 1 
[U(}l + h2(}2 + h3(}3 + L1 - 2'Yl + 2m1ga1c1 + m2g(a1 c1 + 2a2c12) 

1 
+m3g(a1c1 +a2c12 + 2a3c123) = Tl 

.. .. .. 1 1 
h2(}1 + [22(}2 + [23(}3 + L2 - 2'2 + 2m2ga2c12 

1 
+ m3g( a2C12 + 2a3c123) = T2 

.. .. .. 1 1 
h3(}1 + h3(}2 + [33(}3 + L3 - 2'3 + 2m3ga3c123 = T3 

With this example, it becomes apparent that a straightforward differ
entiation procedure to derive the Euler-Lagrange equations of a robotic 
manipulator, or for that matter, of a mechanical system at large, is not 
practical. For example, these equations do not seem to lend themselves to 
symbolic manipulations for a six-axis manipulator of arbitrary architecture, 
given that they become quite cumbersome even for a three-axis planar ma
nipulator with an architecture that is not so general. For this reason, pro ce
dures have been devised that lend themselves to an algorithmic treatment. 
We will study a procedure based on the natural orthogonal complement 
whereby the underlying equations are derived using matrix-times-vector 
multiplications. 

6.4 Recursive Inverse Dynamics 

The inverse dynamics problem associated with serial manipulators is stud
ied here. We assume at the outset that the manipulator under study is of 
the serial type with n + 1 links including the base link and n joints of either 
the revolute or the prismatic type. 

The underlying algorithm consists of two steps: (i) kinematic compu
tations, required to determine the twists of all the links and their time 
derivatives in terms of e, 9, and Ö; and (ii) dynamic computations, re
quired to determine both the constraint and the external wrenches. Each 
of these steps is described below, the aim here being to calculate the desired 
variables with as few computations as possible, for one purpose of inverse 
dynamics is to permit the real-time model-based control ofthe manipulator. 
Real-time performance requires, obviously, a low number of computations. 
For the sake of simplicity, we decided against discussing the algorithms 
with the lowest computational cost, mainly because these algorithms, fully 
discussed by Balafoutis and Patel (1991), rely heavily on tensor calculus, 
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which we have not studied here. Henceforth, revolute joints are referred to 
as R, prismatic joints as P. 

6.4.1 Kinematics Computations: Outward Recursions 

We will use the Denavit-Hartenberg (DH) notation introduced in Sec
tion 4.2 and hence will refer to Fig. 4.7 for the basic notation required 
for the kinematic analysis to be described first. Note that the calculation 
of each Qi matrix, as given by eq.( 4.1d), requires four multiplications and 
zero additions. 

Moreover, every 3-dimensional vector-component transfer fram the F i 

frame to the F i +1 frame requires a multiplication by Q[. Likewise, ev
ery component transfer from the F i +1 frame to the F i frame requires a 
multiplication by Qi. Therefore, we will need to account for the afore
mentioned component transfers, which we will generically term coordinate 
transformations between successive coordinate frames. We derive below 
the number of operations required for such transformations. If we have 
[r li == [rI, r2, r3l T and we need [r li+I, then we proceed as follows: 

(6.22) 

and if we recall the form of Qi from eq.(4.1d), we then have 

sinOi 
Ai cos Bi 

-J.Li cos Bi 

where Ai == cosni and J.Li == sinni, while 

[
r l COSOi + r2 SinOi ] 

-Air + J.Lir3 
J.Lir + Air3 

(6.23a) 

(6.23b) 

Likewise, if we have [v li+I == [VI, V2, V3 V and we need [v li, we use the 
component transformation given below: 

where 

- Ai sin Bi 
Ai COS Bi 

J.Li 

[
VI COsBi - VSinBi] 
VI sin Bi + V COS Bi 

V2J.Li + V3 Ai 
(6.24a) 

(6.24b) 

It is now apparent that every coordinate transformation between suc
cessive frames, whether forward or backward, requires eight multiplications 
and four additions. Here, as in Chapter 4, we indicate the units of multi
plications and additions with M and A, respectively. 
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The angular velocity and acceleration of the ith link are computed re
cursively as follows: 

Wi-l + Biei, if the ith joint is R 

Wi-l, if the ith joint is P 

Wi-l + Wi-l x Biei + eiei, if the ith joint is R 

Wi-l, if the ith joint is P 

(6.25a) 

(6.25b) 

for i = 1, 2, ... , n, where Wo and Wo are the angular velo city and angular 
acceleration ofthe base link. Note that eqs.(6.25a & b) are frame-invariant; 
i.e., they are valid in any coordinate frame, as long as the same frame is used 
to represent all quantities involved. Below we derive the equivalent relations 
applicable when taking into account that quantities with a subscript i are 
available in Fi+l-coordinates. Hence, operations involving quantities with 
different subscripts require a change of coordinates, which is taken care of 
by the corresponding rotation matrices. 

In order to reduce the numerical complexity of the algorithm developed 
here, all vector and matrix quantities of the ith link will be expressed in 
Fi+l. Note, however, that the two vectors ei and ei+l are fixed to the ith 
link, which is a potential source of confusion. Now, since ei has very simple 
components in F i , namely, [0, 0, 1 jT, this will be regarded as a vector of 
the (i -l)st link. Therefore, this vector, or multiples of it, will be added to 
vectors bearing the (i - 1 )st subscript without any coordinate transforma
tion. Moreover, subscripted brackets, as introduced in Section 2.2, can be 
avoided if all vector and matrix quantities subscripted with i, except for 
vector ei, are assumed to be expressed in Fi+ 1. Furthermore, in view of the 
se rial type of the underlying kinematic chain, only additions of quantities 
with two successive subscripts will appear in the relations below. 

Quantities given in two successive frames can be added if both are ex
pressed in the same frame, the obvious frame of choice being the frame of 
one of the two quantities. Hence, all we need to add two quantities with 
successive subscripts is to multiply one of these by a suitable orthogo
nal matrix. Additionally, in view of the outwards recursive nature of the 
kinematic relations above, it is apparent that a transfer from F i - to F i+1-

coordinates is needed, which can be accomplished by multiplying either ei 
or any other vector with the (i - 1) subscript by matrix Q;. Hence, the 
angular velocities and accelerations are computed recursively, as indicated 
below: 

T . 
Qi (Wi-l + (}iei) , if the ith joint is R 

(6.26a) 
Q; Wi-l, if the ith joint is P 

if the ith joint is R 
(6.26b) 

if the ith joint is P 
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If the base link is an inertial frame, then 

Wo = 0, Wo = 0 (6.27) 

Thus, calculating each Wi vector in Fi+l when Wi-1 is given in F i requires 
8M and 5A if the ith joint is R; if it is P, the said calculation reduces to 8M 
and 4A. Here, note that {)iei = [0, 0, ()i]T in Fi-coordinates, and hence, 
the vector addition of the upper right-hand side of eq.(6.26a) requires only 
1A. Furthermore, in order to determine the number of operations required 
to calculate Wi in Fi+1 when Wi-1 is available in Fi, we note that 

(6.28) 

Moreover, we let 

(6.29) 

Hence, 

(6.30) 

Furthermore, we note that 

(6.31) 

and hence, the calculation of Wi in Fi+1 when Wi-1 is given in F i requires 
10M and 7 A if the ith joint is R; if it is P, the same calculation requires 
8M and 4A. 

Furthermore, let Ci be the position vector of Ci, the mass center of the 
ith link, Pi being the vector directed from Oi to Ci, as shown in Figs. 6.2 
and 6.3. The position vectors of two successive mass centers thus observe 
the relationships 

(i) if the ith joint is R, 

Oi-1 == ai-1 - Pi-1 

Ci = Ci-1 + Oi-1 + Pi 

(ii) if the ith joint is P, 

Oi-1 == d i - 1 - Pi-1 

Ci = Ci-1 + 0i-1 + biei + Pi 

(6.32a) 

(6.32b) 

(6.32c) 

(6.32d) 
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FIGURE 6.2. Arevolute joint. 

where point Gi, in this case, is a point of the (i - l)st link conveniently 
defined, as dictated by the particular geometry of the manipulator at hand. 
The foregoing freedom in the choice of Gi is a consequence of prismatic pairs 
having only a defined direction but no axis, properly speaking. 

Notice that in the presence of arevolute pair at the ith joint, the differ
ence ai-l - pi - 1 is constant in Fi. Likewise, in the presence of a prismatic 
pair at the same joint, the difference d i - 1 - pi - 1 is constant in F i . There
fore, these differences are computed off-line, their evaluation not counting 
toward the computational complexity of the algorithm. 

Upon differentiation of both sides of eqs.(6.32b & d) with respect to 
time, we derive the corresponding relations between the velocities and 
accelerations of the mass centers of links i-I and i, namely, 

(i) if the ith joint is R, 

Ci = Ci-l + Wi-l X Di-l + Wi X Pi (6.33a) 

Ci = Ci-l + Wi-l X Di-l + Wi-l X (Wi-l X Di-t) + Wi X Pi + 
Wi X (Wi X Pi) (6.33b) 

(ii) if the ith joint is P, 

(6.34a) 

(6.34b) 

(6.34c) 
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FIGURE 6.3. A prismatic joint. 

Vi == Wi X Ui 

Ci = Ci-l + Vi + biei 

(6.34d) 

(6.34e) 

(6.34f) 

for i = 1, 2, ... , n, where Co and Co are the velocity and acceleration of 
the mass center of the base link. If the latter is an inertial frame, then 

Wo = 0, Wo = o. Co = 0, Co = 0 (6.35) 

Expressions (6.32b) to (6.34f) are invariant, i.e., they hold in any coor
dinate frame, as long as all vectors involved are expressed in that frame. 
However, we have vectors that are naturally expressed in the F i frame 
added to vectors expressed in the F H1 frame, and hence, a coordinate 
transformation is needed. This coordinate transformation is taken into ac
count in Algorithm 6.4.1, whereby the logical variable R is true if the ith 
joint is R; otherwise it is false. 

In performing the foregoing calculations, we need the cross product of 
a vector w times ei in F i coordinates, the latter being simply [ei li = 
[0, 0, 1 jT, and hence, this cross product reduces to [ W2, -Wl, ° jT, whereby 
Wk, for k = 1,2,3, are the x, y, and z Fi-components of w. This cross prod
uct, then, requires no multiplications and no additions. Likewise, vectors 
... . T' T 

biei, biei, and biei take on the sImple forms [0, 0, bd , [0, 0, bd ,and 
[0,0, bdT in Fi . Adding any of these vectors to any other vector in Fi 

then requires one single addition. If, moreover, we take into account that 
the cross product of two arbitrary vectors requires 6M and 3A, we then 
have the operation counts given below: 
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Algorithm 6.4.1 (Outward Recursions): 

d {Q }n-1 •... { }n {1i:.}no-1 rea i ° ,Co, Wo, Co, wo, co, Pi 1, u. 

For i = 1 to n step 1 do 

enddo 

update Qi 

if R then 
Ci f- Qf(Ci-1 + Oi-1) + Pi 

T . 
Wi f- Qi (Wi-1 + Oiei) 

Ui_1f- Wi-1 X 0i-1 

Vi f-

Ci f-

Wi f-

Ci f-

else 
ui f-

Ci f-

Wi f-

Vi f-

Wi f-

Ci f-

Wi f-

Ci f-

endif 

Wi X Pi 

Qf(Ci-1 + Ui-1) + Vi 
T . . .. 

Qi (Wi-1 + Wi-1 x Oiei + Oiei) 

Qf(Ci-1 + Wi-1 X Oi-1 + Wi-1 X Ui-1) 

+Wi x Pi + Wi X Vi 

QT Oi-1 + Pi + biei 

QTCi-1 + Ui 

QTW i-1 

Wi X Ui 

biei 

QTCi-1 + Vi + Wi 

QTWi-1 

QTCi-1 + Wi X Ui + Wi X (Vi + Wi + Wi) + biei 

(i) If the ith joint is R, 
Qi requires 4M and OA 
Ci requires 8M and lOA 
Wi requires 8M and 5A 
Ci requires 20M and 16A 
Wi requires 10M and 7 A 
Ci requires 32M and 28A 

(ii) If the ith joint is P, 
Qi requires 4M and OA 
Ci requires 16M and 15A 
Wi requires 8M and 4A 
Ci requires 14M and llA 
Wi requires 8M and 4A 
Ci requires 20M and 19A 
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TABLE 6.1. Complexity of the Kinematics Computations 

Item M A 

{Qi}! 4n 0 

{cd! 8n IOn 

{Will 8n 5n 

{Ci}! 20n 16n 

{Will IOn 7n 

{Ci}! 32n 28n 

Total 82n 66n 

The computational complexity for the forward recursions of the kine
matics calculations for an n-revolute manipulator, as pertaining to various 
algorithms, are summarized in Table 6.1. Note that if some joints are P, 
then these figures become lower. 

6.4.2 Dynamics Computations: Inward Recursions 

A few additional definitions are first introduced. Let wf denote the wrench 
exerted on the ith link by the (i - 1 )st link through contact at the ith kine
matic pair. The moment and the force of this wrench are correspondingly 
defined as nf and rr, the latter being applied at point Oi of the ith axis. 
A free-body diagram of the ith link is included in Fig. 6.4. 

Moreover, a free-body diagram of the end-effector, or nth link, appears 
in Fig. 6.5. Note that this link is acted upon by a nonworking constraint 

FIGURE 6.4. Free-body diagram of the ith link. 
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wrench, exerted through the nth pair, and a working wrench; the latter 
involves both active and dissipative forces and moments. Although dissipa
tive forces and moments are difficult to model because of dry friction and 
striction, they can be readily incorporated into the dynamics model, once 
a suitable constitutive model for these items is available. Since these forces 
and moments depend only on joint variables and joint rates, they can be 
calculated once the kinematic variables are known. For the sake of simplic
ity, dissipative wrenches are not included here, their discussion being the 
subject of Section 6.8. Hence, the force and the moment that the (i - l)st 
link exerts on the ith link through the ith joint only produce nonworking 
constraint and active wrenches. That is, for arevolute pair, one has 

[ftl rf' = ~~ (6.36) 

in which ni and nf are the nonzero Fi-components of the nonworking 
constraint moment exerted by the (i - l)st link on the ith link; obviously, 
this moment lies in a plane perpendicular to Zi, whereas Ti is the active 
torque applied by the motor at the said joint. Vector rf' contains only 
nonworking constraint forces. 

For a prismatic pair, one has 

(6.37) 

where vector nf contains only nonworking constraint torques, while Ti is 
now the active force exerted by the ith motor in the Zi direction, If and 
Jl being the nonzero Fi-components of the nonworking constraint force 
exerted by the ith joint on the ith link, which is perpendicular to the Zi 

axis. 
In the algorithm below, the driving torques or forces { Ti } f , are computed 

via vectors nf and r!. In fact, in the case of arevolute pair, Ti is simply the 
third component of nf; in the case of a prismatic pair, Ti is, accordingly, 
the third component of r!. From Fig. 6.5, the Newton-Euler equations of 
the end-efIector are 

(6.38a) 

(6.38b) 

where rand n are the external force and moment, the former being applied 
at the mass center of the end-efIector. The Newton-Euler equations for the 
remaining links are derived based on the free-body diagram of Fig. 6.4, 
namely, 

(6.38c) 

(6.38d) 
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nthlink 

p 

f 

FIGURE 6.5. Free-body diagram of the end-effector. 

with {ji defined as the difference ai - Pi in eqs.(6.32a & c). 
Once the n[ and f{ vectors are available, the actuator torques and 

forces, denoted by Ti, are readily computed. In fact, if the ith joint is a 
revolute, then 

(6.39) 

which does not require any further operations, for Ti reduces, in this case, 
to the Zi component of vector n[. Similarly, if the ith joint is prismatic, 
then the corresponding actuator force reduces to 

(6.40) 

Again, the foregoing relations are written in invariant form. In order to 
perform the computations involved, transformations that transfer coordi
nates between two successive frames are required. Here, we have to keep in 
mind that the components of a vector expressed in the (i + 1 )st frame can 
be transferred to the ith frame by multiplying the vector array in (i + l)st 
coordinates by matrix Qi. In taking these coordinate transformations into 
account, we derive the Newton-Euler algorithm from the above equations, 
namely, 
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Algorithm 6.4.2 (Inward Recursions): 

r! r- mncn - r 
nt: r- Inwn + W n x Inwn - n + Pn X r! 
T n r- (nt:)z 
For i = n - 1 to 1 step -1 do 

cfJi+1 r- Qir41 rr r- mici + cfJi+l 

nf r- Iiwi + Wi X Iiwi + Pi x rr + Qinf+l + Oi x cfJi+1 

Ti r- (nf)z 
enddo 

Note that, within the do-Ioop of the foregoing algorithm, the vectors to 
the left of the arrow are expressed in the ith frame, while r41 and nf+1' 
to the right of the arrow, are expressed in the (i + 1 )st frame. Moreover, 
if either the nth or the ith pair is prismatic, then the last statement both 
outside and inside the do-Ioop must be changed accordingly; one has, in 
that case, 

Tn r- (r';)z 
Ti r- (r[)z 

(6.41a) 

(6.41b) 

In calculating the computational complexity of this algorithm, note that 
the ai - Pi term is constant in the (i + 1 )st frame, and hence, it is computed 
off-line. Thus, its computation need not be accounted for. A summary of 
computational costs is given in Table 6.2 for an n-revolute manipulator, 
with the row number indicating the step in Algorithm 6.4.2. 

The total numbers of multiplications Md and additions Ad required by 
the foregoing algorithm are readily obtained, with the result shown below: 

Md = 55n - 22, A d = 44n - 14 (6.42) 

TABLE 6.2. Complexity of Dynamics Computations 

Row# M A 

1 3 3 
2 30 27 
5 8(n- 1) 4(n - 1) 
6 3(n - 1) 3(n - 1) 
7 44(n - 1) 37(n - 1) 

Total 55n - 22 44n - 14 
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In particular, for a six-revolute manipulator, one has 

n = 6, Md = 308, Ad = 250 (6.43) 

Ifthe kinematics computations are accounted for, then the Newton-Euler 
algorithm given above for the inverse dynamics of n-revolute manipulators 
requires M multiplications and A additions, as given below: 

M = 137n - 22, A = nOn - 14 (6.44) 

The foregoing number of multiplications is identical to that reported by 
Walker and Orin (1982); however, the number of additions is slightly higher 
than Walker and Orin's figure, namely, 101n - 1l. 

Thus, the inverse dynamics of a six-revolute manipulator requires 800 
multiplications and 646 additions. These computations can be performed in 
a few microseconds using a modern processor. Clearly, if the aforementioned 
algorithms are tailored to suit particular architectures, then they can be 
further simplified. Note that, in the presence of a prismatic pair in the jth 
joint, the foregoing complexity is reduced. In fact, if this is the case, the 
Newton-Euler equations for the jth link remain as in eqs.(6.38c & d) for the 
ith link, the only difference appearing in the implementing algorithm, which 
is simplified, in light of the results derived in discussing the kinematics 
calculations. 

The incorporation of gravity in the Newton-Euler algorithm is done 
most economically by following the idea proposed by Luh, Walker, and 
Paul (1980), namely, by declaring that the inertial base undergoes an 
acceleration -g, where g denotes the acceleration of gravity. That is 

Co =-g (6.45) 

the gravitational accelerations thus propagating forward to the EE. A com
parison of various algorithms with regard to their computational complex
ity is displayed in Table 6.3 for an n-revolute manipulator. For n = 6, the 
corresponding figures appear in Table 6.4. 

6.5 The Natural Orthogonal Complement In 
Robot Dynamics 

In simulation studies, we need to integrate the system of ordinary differ
ential equations (ODE) describing the dynamics of a robotic mechanical 
system. This system of ODE is known as the mathematical model of the 
system at hand. Note that the Newton-Euler equations derived above for 
aserial manipulator do not constitute the mathematical model because we 
cannot use the recursive relations derived therein to set up the underlying 
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TABLE 6.3. Complexity of Different Algorithms for Inverse Dynamies 

Author(s) Methods Multiplications Additions 

Hollerbach (1980) E-L 412n - 277 320n - 201 
Luh et al. (1980) N-E 150n - 48 131n - 48 
Walker & Orin (1982) N-E 137n - 22 101n -11 
Khalil et al. (1986) N-E 105n - 92 94n - 86 
Angeles, Ma & Rojas (1989) Kane 105n -109 90n -105 
Balafoutis & Patel (1991) tensor 93n - 69 81n - 65 

TABLE 6.4. Complexity of Different Algorithms for Inverse Dynamics, for n = 6 

Multiplications Additions 
Author(s) Methods (n = 6) (n = 6) 

Hollerbach (1980) E-L 2195 1719 
Luh et al. (1980) N-E 852 738 
Walker & Orin (1982) N-E 800 595 
HoIIerbach and Sahar (1983) N-E 688 558 
Kane & Levinson (1983) Kane 646 394 
Khalil et al. (1986) N-E 538 478 
Angeles, Ma & Rojas (1989) Kane 521 435 
Balafoutis & Patel (1991) tensor 489 420 

ODE directly. What we need is a model relating the state of the system 
with its external generalized forces of the form 

Je = f(x, u), x(to) = Xo (6.46) 

where x is the state vector, u is the input or control vector, Xo is the state 
vector at a certain time to, and f(x, u) is a nonlinear function of x and 
u, derived from the dynamics of the system. The state of a dynamical 
system is defined, in turn, as the set of variables that separate the past 
from the future of the system (Bryson and Ho, 1975). Thus, if we take to 
as the present time, we can predict from eqs.(6.46) the future states of the 
system upon integration of the initial-value problem at hand, even if we 
do not know the complete past history of the system in fuII detail. Now, if 
we regard the vector (J of independent joint variables and its time-rate of 
change, iJ, as the vectors of generalized coordinates and generalized speeds, 
then an obvious definition of x is 

(6.47) 
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The n generalized coordinates, then, define the configuration of the system, 
while their time-derivatives determine its generalized momentum, an item 
defined in eq.(6.20d). Hence, knowing () and Ö, we can predict the future 
values of these variables with the aid of eqs.(6.46). 

Below we will derive the mathematical model, eq.(6.46), explicitly, as 
pertaining to serial manipulators, in terms of the kinematic structure of the 
system and its inertial properties, Le., the mass, mass-center coordinates, 
and inertia matrix of each of its bodies. To this end, we first write the 
underlying system of uncoupled Newton-Euler equations for each link. We 
have n + 1 links numbered from 0 to n, which are coupled by n kinematic 
pairs. Moreover, the base link 0 need not be an inertial frame; if it is 
noninertial, then the force and moment exerted by the environment upon it 
must be known. For ease of presentation, we will assume in this section that 
the base frame is inertial, the modifications needed to handle a noninertial 
base frame to be introduced in Subsection 6.5.2. 

We now recall the Newton-Euler equations of the ith body in 6-dimen
sional form, eqs.(6.5b), which we reproduce below for quick reference: 

(6.48) 

Furthermore, the definitions of eqs.(6.13a) and (6.13b) are recalled. Appar
ently, M and Ware now 6n x 6n matrices, while t, w C , w A , and w D are 
all 6n-dimensional vectors. Then the foregoing 6n scalar equations for the 
n moving links take on the simple form 

(6.49) 

in which w W has been decomposed into its active, gravitational, and dissi
pative parts w A , w G , and w D , respectively. Now, since gravity acts at the 
mass center of a body, the gravity wrench wf acting on the ith link takes 
the form 

(6.50) 

The mathematical model displayed in eq.(6.49) represents the uncoupled 
Newton-Euler equations of the overall manipulator. The following step of 
this derivation consists of representing the coupling between every two 
consecutive links as a linear homogeneous system of algebraic equations on 
the link twists. Moreover, we note that all kinematic pairs allow a relative 
one-degree-of-freedom motion between the coupled bodies. We can then 
express the kinematic constraints of the system in linear homogeneous form 
in the 6n-dimensional vector of manipulator twist, namely, 

Kt=O (6.51) 

with K being a 6n x 6n matrix, to be derived in Subsection 6.5.1. What is 
important to note at the moment is that the kinematic constraint equations, 
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or constraint equations, for brevity, eqs.(6.51), consist of a system of 6n 
scalar equations, i.e., six scalar equations for each joint, for the manipulator 
at hand has n joints. Moreover, when the system is in motion, t is different 
from zero, and hence, matrix K is singular. In fact, the dimension of the 
nullspace of K, termed its nullity, is exactly equal to n, the degree of 
freedom of the manipulator. Furthermore, since the nonworking constraint 
wrench w C produces no work on the manipulator, its sole function being 
to keep the links together, the power developed by this wrench on t, for 
any possible motion of the manipulator, is zero, Le., 

(6.52) 

On the other hand, if the two sides of eq.(6.51) are transposed and then 
multiplied by a 6n-dimensional vector A, one has 

(6.53) 

Upon comparing eqs.(6.52) and (6.53), it is apparent that w C is ofthe form 

(6.54) 

More formally, the inner product of w C and t, as stated by eq.(6.52), 
vanishes, and hence, t lies in the nullspace of K, as stated by eq.(6.51). This 
means that w C lies in the range ofKT , as stated in eq.(6.54). The following 
step will be to represent t as a linear transformation of the independent 
generalized speeds, Le., as 

t=TÖ (6.55) 

with T defined as a 6n x n matrix that can be fairly termed the twist
shaping matrix. Moreover, the above mapping will be referred to as the 
twist-shape relations. The derivation of expressions for matrices K and T 
will be described in detail in Subsection 6.5.1 below. Now, upon substitution 
of eq.(6.55) into eq.(6.51), we obtain 

KTÖ=O (6.56a) 

Furthermore, since the degree of freedom of the manipulator is n, the n 
generalized speeds {iJ i }l can be assigned arbitrarily. However, while doing 
this, eq.(6.56a) has to hold. Thus, the only possibility for this to happen is 
that the product KT vanish, Le., 

KT=O (6.56b) 

where 0 denotes the 6n x n zero matrix. The above equation states that T is 
an orthogonal complement of K. Because of the particular form of choosing 
this complement-see eq.(6.55)-we refer to T as the natural orthogonal 
complement of K (Angeles and Lee, 1988). 
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In the final step of this method, t of eq.(6.49) is obtained from eq.(6.55), 
namely, 

(6.57) 

Furthermore, the uncoupled equations, eqs.(6.49), are multiplied on the 
left by TT, thereby eliminating w C from those equations and reducing 
these to a system of only n independent equations, free of nonworking 
constraint wrenches. These are not hing but the Euler-Lagrange equations 
of the manipulator, namely, 

(6.58) 

where I is the positive definite n x n genemlized inertia matrix of the 
manipulator and is defined as 

(6.59) 

which is identical to the inertia matrix derived using the Euler-Lagrange 
equations, with 8 as the vector of generalized coordinates. Now, we let T 

and Ii denote the n-dimensional vectors of active and dissipative generalized 
force. Moreover, we let C(8, 8)8 be the n-dimensional vector of quadmtic 
terms of inertia force. The aforementioned items are defined as 

(6.60) 

Clearly, the sum T + Ii produces 4>, the generalized force defined in 
eq.(6.11). Thus, the Euler-Lagrange equations of the system take on the 
form 

(6.61) 

As a matter of fact, Ii is defined in eq.(6.60) only for conceptual reasons. 
In practice, this term is most easily calculated once a dissipation function 
in terms of the generalized coordinates and generalized speeds is available, 
as described in Section 6.8. Thus, Ii is computed as 

Ii = _ 8~ 
88 

(6.62) 

It is pointed out that the first term of the right-hand side of eq.(6.61) 
is quadmtic in 8 because matrix C, defined in eq.(6.60), is linear in 8. In 
fact, the first term of that expression is linear in a factor T that is, in turn, 
linear in 8. Moreover, the second term of the same expression is linear in 
W, which is linear in 8 as weH. However, C is nonlinear in 8. Because of 
the quadratic nature of that term, it is popularly known as the vector of 
Coriolis and centrifugal forces, whereas the left-hand side of that equation 
is given the name of vector of inertia forces. Properly speaking, both the 
left-hand side and the first term of the right-hand side of eq.(6.61) arise 
from inertia forces. 
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Example 6.5.1 (A minimum-time trajectory) A pick-and-place operation 
is to be performed with an n-axis manipulator in the shortest possible time. 
Moreover, the maneuver is defined so that the n-dimensional vector of joint 
variables is given by a common shape function sex), with 0 ~ x ~ 1 and 
o ~ s ~ 1, which is prescribed. Thus, for a fixed n-dimensional vector 80 , 

the time-history of the joint-variable vector, 8(t), is given by 

8(t) = 80 + s (~) A8, 0 ~ t ~ T 

with T defined as the time taken by the maneuver, while 80 and 80 + A8 
are the values of the joint-variable vector at the pick- and the place-postures 
of the manipulator, respectively. These vectors are computed from inverse 
kinematics, as explained in Chapter 4. Furthermore, the load-carrying ca
pacity of the manipulator is specified in terms of the maximum torques 
delivered by the motors, namely, 

!Ti I ~ '1\, for i = 1, ... , n 

where the constant values '1\ are supplied by the manufacturer. In order to 
keep the analysis simple, we neglect power loses in this example. Find the 
minimum time in which the maneuver can take place. 

Solution: Let us first calculate the vector of joint-rates and its time-deriv
ative: 

. 1 
8(t) = rS'(X)A8, 

.. 1 1/ 

8(t) = T2S (x)A8, 

Now we substitute the aforementioned values into the mathematical model 
of eq.(6.61), with b(t) = 0, thereby obtaining 

T = I(8)Ö + C(8, iJ)iJ 

= ;2sl/(X)I(X)A8 + ;2 S/2 (X)C(X)A8 

1 = -fex) - T2 

with fex) defined, of course, as 

fex) == [I(x)sl/(x) + C(X)S/2(X)]A8 

the 1/T2 factor in the term of Coriolis and centrifugal forces stemming 
from the quadratic nature of the C(8, iJ)iJ term. What we now have is the 
vector of motor torques, T, expressed as a function of the scalar argument 
x. Now, let fi(X) be the ith component of vector fex), and 

Fi == max{lli(x)II}, for i = 1, ... ,n 
x 
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We would then like to have each value Pi produce the maximum available 
torque Ti, namely, 

_ Fi 
Ti = T2' i = 1, ... n 

and hence, for each joint we have a value Ti of T given by 

T 2 = Pi 
t - - , 

Ti 
i = 1, ... n 

Obviously, the minimum value sought, Tmin , is nothing but the maximum 
of the foregoing values, Le., 

Tmin = max{Tdf 
• 

thereby completing the solution. 

6.5.1 Derivation of Constraint Equations and Twist-Shape 
Relations 

In order to illustrate the general ideas behind the method of the natural or
thogonal complement, we derive below the underlying kinematic constraint 
equations and the twist-shape relations. We first note, from eq.(6.25a), that 
the relative angular velocity of the ith link with respect to the (i - 1 )st 
link, Wi - Wi-l, is iJiei. Thus, if matrix Ei is defined as the cross-product 
matrix of vector ei, then, the angular velocities of two successive links obey 
a simple relation, namely, 

(6.63) 

Furthermore, we rewrite now eq.(6.33a) in the form 

(6.64) 

where D i and R.; are defined as the cross-product matrices of vectors Oi, 
defined in Subsection 6.4.1 as a; - Pi' and Pi' respectively. In particular, 
when the first link is inertial, eqs.(6.63 & b), as pertaining to the first link, 
reduce to 

ElWl = 0 

Cl +RlWl = 0 

(6.65a) 

(6.65b) 

Now, eqs.(6.63) and (6.64), as weH as their counterparts for i = 1, 
eqs.(6.65a & b), are furt her expressed in terms of the link twists, thereby 
producing the constraints below: 

Knt l = 0 

Ki,i-lti-l + Kiiti = 0, i = 1, ... , n 

(6.66a) 

(6.66b) 
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with Ku and K ij , for i = 2, ... , n and j = i-I, i, defined as 

Ku == [EI 
R1 ~] (6.67a) 

K i ,i-l == [ -Ei 
D i- 1 ~1] (6.67b) 

K ii == [ Ei 
R; ~] (6.67c) 

where 1 and 0 denote the 3 x 3 identity and zero matrices, respectively. 
Furthermore, from eqs.(6.66a & b) and (6.67a-c), it is apparent that matrix 
K appearing in eq.(6.56b) takes on the form 

Ku 0 6 0 6 0 6 0 6 

K 21 K 22 0 6 0 6 0 6 

K= (6.68) 

0 6 0 6 0 6 K n - 1,n-l 0 6 

0 6 0 6 0 6 K n ,n-l K nn 

with 0 6 denoting the 6 x 6 zero matrix. 
Further, the link-twists are expressed as linear combinations of the joint

rate vector iJ. To this end, we define the 6 x n partial Jacobian J i as the 
matrix mapping the joint-rate vector iJ into the twist ti of that link, i.e., 

JiiJ = t i (6.69) 

whose jth column, tij, is given, for i, j = 1, 2, ... , n, by 

{ [ej ; riJ, if j ::; i; 

tij = [ ~] , otherwise. 
(6.70) 

with rij illustrated in Fig. 6.6 and defined, for i, j = 1, ... , n, as 

.. _ { aj + aj+l + ... + ai-l + Pi' ~f ~ __ < ~: 
r'J = p" If J Z, 

0, otherwise. 
(6.71) 

We can thus readily express the twist ti of the ith link as a linear 
combination of the first i joint rates, namely, 

t i = 0 1 t i1 + 02ti2 + ... + Oitii, i = 1, ... , n 

and hence, matrix T of eq.(6.55) takes the form 

tU 

(6.72) 

(6.73) 
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• • • 

~ 
FIGURE 6.6. Kinematic subchain comprising links j, j + 1 ... , i. 

As a matter of verifieation, one ean readily prove that the produet of ma
trix T, as given by eq.(6.73), by matrix K, as given by eq.(6.68), vanishes, 
and henee, relation (6.56b) holds. 

The kinematie eonstraint equations on the twists, for the ease in whieh 
the ithjoint is prismatie, are derived likewise. In this ease, we use eqs.(6.34a 
& e), with the latter rewritten more eonveniently for our purposes, namely, 

Wi = Wi-l 

Ci = Ci-l + Wi-l X (c5i - 1 + Pi + bied + biei 

We now introduee one further definition: 

R~ == D~_l +~ 

(6.74a) 

(6.74b) 

(6.75) 

where D~_l is the eross-produet matrix of veetor c5i - 1 , defined in Subsee
tion 6.4.1 as d i - 1 - Pi-I' while ~ is the eross-produet matrix of Pi + biei. 
Henee, eq.(6.74b) ean be rewritten as 

C' - C' 1 + R~w' - b·e· = 0 'I. '1.- 'I. 'I. 2. 'l. (6.76) 

Upon multiplieation of both sides of eq.(6. 76) by Ei, the term in bi eaneels, 
and we obtain 

(6.77) 

Henee, eqs.(6.74a) and (6.77) ean now be regrouped in a single 6-dimen
sional linear homogeneous equation in the twists, namely, 

(6.78) 
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the associated matrices being defined below: 

K' -i,i-l = [-1 0] 
o -Ei 

~] 

(6.79a) 

(6.79b) 

with 1 and 0 defined already as the 3 x 3 identity and zero matrices, 
respectively. If the first joint is prismatic, then the corresponding constraint 
equation takes on the form 

(6.80) 

with K~I defined as 

K' - [1 0] 
11 = 0 EI (6.81) 

Furthermore, if the kth pair is prismatic and 1 ::; k ::; i, then the twist 
ti of the ith link changes to 

ti=eItil+···+bkt~k+···+eitii' i=1, ... ,n (6.82) 

where t~k is defined as 

(6.83) 

In order to set up eq.(6.61), then all we now need is T, which is computed 
below. Two cases will be distinguished again, namely, whether the joint at 
hand is arevolute or a prismatic pair. In the first case, from eq.(6.70) one 
readily derives, for i, j = 1,2, ... ,n, 

{[ 
w·xe· ] 

i,;~ [~yxej)~rij~ejxrij' if j ::; i; 

(6.84) 

otherwise 

where, from eq.(6.71), 

(6.85) 

On the other hand, if the kth pair is prismatic and 1 ::; k ::; i, then from 
eq.(6.83), the time-rate of change of t~k becomes 

(6.86) 

thereby completing the desired derivations. 
Note that the natural orthogonal complement can also be used for the 

inverse dynamics calculations. In this case, if the manipulator is subjected 
to a gravity field, then the twist-rate of the first link will have to be modified 
by adding a nonhomogeneous term to it, thereby accounting for the gravity
acceleration terms. This issue is discussed in Section 6.7. 
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6.5.2 Noninerlial Base Link 

Noninertial bases occur in space applications, e.g., in the case of a manip
ulator mounted on aspace platform or on the space shuttle. A noninertial 
base can be readily handled with the use of the natural orthogonal comple
ment, as discussed in this subsection. Since the base is free of attachments 
to an inertial frame, we have to add its six degrees of freedom (dof) to the 
n dof of the rest of the manipulator. Correspondingly, t, w C , w A , and w D 

now become 6(n + l)-dimensional vectors. In particular, t takes the form 

t = [tif t[ (6.87) 

with to defined as the twist of the base. Furthermore, the vector of in
dependent generalized speeds, 9, is now of dimension n + 6, its first six 
components being those of t o, the other n remaining as in the previous 
case. Thus, ~ has the components shown below: 

(6.88) 

Correspondingly, T becomes a 6(n + 1) x (n + 6) matrix, namely, 

T == [~, ~,] (6.89) 

where 1 is the 6 x 6 identity matrix, 0 denotes the 6 x n zero matrix, 0' 
represents the 6n x 6 zero matrix, and T' is the 6n x n matrix defined in 
eq.(6.73) as T. Otherwise, the model remains as in the case of an inertial 
base. 

A word of caution is in order here. Because of the presence of the twist 
vector to in the definition of the vector of generalized speeds above, the 
latter cannot, properly speaking, be regarded as a time-derivative. Indeed, 
as studied in Chapter 3, the angular velo city appearing in the twist vector is 
not a time-derivative. Hence, the vector of independent generalized speeds 
defined in eq.(6.88) is represented instead by v, which does not imply a 
time-derivative, namely, 

(6.90) 

6.6 Manipulator Forward Dynamics 

Forward dynamics is needed either for purposes of simulation or for the 
model-based control of manipulators (Craig, 1989), and hence, a fast cal
culation of the joint-variable time-histories O(t) is needed. These time
histories are calculated from the model displayed in eq.(6.61), reproduced 
below for quick reference, in terms of vector O(t), i.e., 

IÖ = -C(O, 9)9 + T + 6(0,9) (6.91) 
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Clearly, what is at stake here is the calculation of Ö from the foregoing 
model. Indeed, the right-hand side of eq.(6.91) can be calculated with the 
aid of the Newton-Euler recursive algorithm, as we will describe below, 
and needs no further discussion for the time being. Now, the calculation 
of Ö from eq.(6.91) is similar to the calculation of iJ from the relation 
between the joint-rates and the twist, derived in Section 4.5. From the 
discussion in that section, such calculations take a number of floating-point 
operations, or flops, that is proportional to n3 , and are thus said to have a 
complexity of O(n3 )-read "order n3". In real-time calculations, we would 
like to have a computational scheme of O(n). In attempting to derive such 
schemes, Walker and Orin (1982) proposed a procedure that they caIled the 
composite rigid-body method, whereby the number of flops is minimized by 
cleverly calculating 1(6) and the right-hand side of eq.(6.91) by means ofthe 
recursive Newton-Euler algorithm. In their effort, they produced an O(n2 ) 

algorithm to calculate Ö. Thereafter, Featherstone (1983) proposed an O(n) 
algorithm that is based, however, on the assumption that Coriolis and 
centrifugal forces are negligible. The same author reported an improvement 
to the aforementioned algorithm, namely, the articulated-body method, that 
takes into account Coriolis and centrifugal forces (Featherstone, 1987.) The 
outcome, for an n-revolute manipulator, is an algorithm requiring 300n -
267 multiplications and 279n - 259 additions. For n = 6, these figures yield 
1,533 multiplications and 1,415 additions. 

In this subsection, we illustrate the application of the method of the 
natural orthogonal complement to the modeling of an n-axis serial ma
nipulator for purposes of simulation. While this algorithm gives an O(n3 ) 

complexity, its derivation is straightforward and gives, for a six-axis ma
nipulator, a computational cost similar to that of Featherstone's, namely, 
1,596 multiplications and 1,263 additions. Moreover, a clever definition of 
co ordinate frames leads to even lower figures, i.e., 1,353 multiplications and 
1,165 additions, as reported by Angeles and Ma (1988). 

The manipulator at hand is assumed to be constituted by n moving links 
coupled by n kinematic pairs of the revolute or prismatic types. Again, 
for brevity, the base link is assumed to be inertial, noninertial bases be
ing readily incorporated as described in Subsection 6.5.2. For the sake of 
conciseness, we will henceforth consider only manipulators mounted on an 
inertial base. Moreover, we assume that the generalized coordinates 6 and 
the generalized speeds iJ are known at an instant tk, along with the driving 
torque T(t), for t ::::: tk, and of course, the DH and the inertial parameters of 
the manipulator are assumed to be known as weIl. Based on the aforemen
tioned information, then, Ö is evaluated at tk and with a suitable integration 
scheme, the values of 6 and iJ are determined at instant tk+l. Obviously, 
the governing equation, eq.(6.61), enables us to solve for Ö(tk). This re
quires, of course, the inversion of the n x n matrix of generalized inertia I. 
Since the said matrix is positive-definite, solving for Ö from eq.(6.61) can be 
done economicaIly using the Cholesky-decomposition algorithm (Dahlquist 
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and Björck, 1974). The sole remaining task is, then, the computation of I, 
the quadratic inertia term CO, and the dissipative torque 6. The last of 
these is dependent on the manipulator and the constitutive model adopted 
for the representation of viscous and Coulomb friction forces and will not 
be considered at this stage. Models for dissipative forces will be studied in 
Section 6.8. Thus, the discussion below will focus on the computation of I 
and CO appearing in the mathematical model of eq.(6.91). 

Furthermore, we will take into account that the end-effector is normally 
acted upon by a working wrench w W that is exerted by the environment. 
For example, in deburring operations, this force is that exerted by the 
workpiece onto the grinding wheel. This wrench is static, in that it does 
not stern from inertia effects. In order to incorporate this wrench into the 
above model, we calculate the joint torque T W that the motors must supply 
in order to balance that wrench. We do this by invoking the First Law of 
Thermodynamics, also known as the Principle of Virtual Work, already in
voked when deriving eq.(4.96a). To this end, we equate the power developed 
by w W with that developed by T W , namely, 

(6.92) 

But, from manipulator kinematics, eq.(4.54), t is nothing but JO, and 
hence, 

a relation valid for arbitrary 8. Therefore, 

(6.93) 

The mathematical model of the manipulator now takes the form 

(6.94) 

with I defined already in eq.(6.59). Next, the 6n x 6n matrix M is factored 
as 

(6.95) 

which is possible because M is at least positive-semidefinite. In particular, 
for manipulators of the type at hand, M is positive-definite if no link-mass 
is neglected. Moreover, due to the diagonal-block structure of this matrix, 
its factoring is straightforward. In fact, H is given simply by 

(6.96) 

each 6 x 6 block H i of eq.(6.96) being given, in turn, as 

(6.97) 



www.manaraa.com

6.6 Manipulator Forward Dynamics 249 

with 1 and 0 defined as the 3 x 3 identity and zero matrices, respectively. 
We thus have 

(6.98) 

Furthermore, Ni can be obtained from the Cholesky decomposition of I i , 
while ni is the positive square root of mi, Le., 

(6.99) 

Now, since each 6 x 6 Mi block is constant, the above factoring can be done 
off-line. From the foregoing definitions, then, the n x n matrix of generalized 
inertia I can now be expressed as 

I=pTp (6.100) 

where P is defined, in turn, as the 6n x n matrix given below: 

P=HT (6.101) 

The computation of P is now discussed. If we recall the structure of T 
from eq.(6.73) and that of H from eq.(6.96), along with the definition of 
P, eq.(6.101), we readily obtain 

[ 

Hltll 
H2t 21 

P= . 

Hntnl 

o 1 [Pll 

HoL ~ :: 
o 

P22 

Pn2 
(6.102) 

with 0 denoting the 6-dimensional zero vector. Moreover, each ofthe above 
nontrivial 6-dimensional arrays Pij is given as 

if the jth joint is R; 

(6.103) 

if the jth joint is P 

Thus, the (i, j) entry of I is computed as the sum of the inner products 
of the (k, i) and the (k,j) blocks of P, for k = j, ... , n, i.e., 

n 

I ij = I ji = L pfiPkj 
k=j 

(6.104) 

with both Pki and Pkj expressed in Fk+l-COordinates, i.e., in kth-link 
coordinates. Now, the Cholesky decomposition of I can be expressed as 

(6.105) 
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where L is an n x n lower-triangular matrix with positive diagonal entries. 
Moreover, eq.(6.94) is now rewritten as 

(6.106) 

From eq.(6.94), it is apparent that the term inside the parentheses in the 
right-hand side of the above equation is not hing but the torque required 
to produce the motion prescribed by the current values of 0 and 0, in the 
absence of dissipative wrenches and with zero joint accelerations, when the 
manipulator is acted upon by a static wrench w W . That is, 

. T W -
CO - J w = rlwD=o,ö=o == r (6.107) 

which can be clearly computed from inverse dynamics. Now eq.(6.105) is 
solved for Ö in two steps, namely, 

LTx = -T+r+6 

LÖ=x 

(6.108a) 

(6.108b) 

In the above equations, then, x is first computed from eq.(6.108a) by 
backward substitution. With x known, Ö is computed from eq.(6.108b) 
by forward substitution, thereby completing the computation of Ö. The 
complexity of the foregoing algorithm is discussed in Subsection 6.6.2. 

Alternatively, Ö can be calculated in two steps from two linear systems 
of equations, the first one underdetermined, the second overdetermined. 
Indeed, if we let the product PÖ be denoted by y, then the dynamics 
model of the manipulator, eq.(6.61), along with the factoring of eq.(6.100), 
leads to 

pTy = -T+r+6 

PÖ=y 

(6.109a) 

(6.109b) 

Thus, in the above equations, y is calculated first as the minimum-norm 
solution of eq.(6.109a); then, the desired value of iJ is calculated as the 
least-square approximation of eq.(6.109b). These two solutions are com
puted most efficiently using an orthogonalization algorithm that reduces 
matrix P to upper-triangular form (Golub and Van Loan, 1989). A straight
forward calculation based on the explicit calculation of the generalized 
inverses involved is not recommended, because of the frequent numerical 
ill-conditioning incurred. Two orthogonalization procedures, one based on 
Householder reflections, the other on the Gram-Schmidt procedure, for the 
computation of both the least-square approximation of an overdetermined 
system of equations and the minimum-norm solution ofits underdetermined 
counterpart are outlined in Appendix B. 

The complexity of the foregoing calculations is discussed in Subsec
tion 6.6.2, based on the Cholesky decomposition of the generalized iner
tia matrix, details on the alternative approach being available elsewhere 
(Angeles and Ma, 1988). 
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6.6.1 Planar Manipulators 

The application of the natural orthogonal complement to planar manipu
lators is straight forward. Here, we assurne that the manipulator at hand is 
composed of n links coupled by n joints of the revolute or the prismatic 
type. Moreover, for conciseness, we assurne that the first link, labeled the 
base, is fixed to an inertial frame. We now adopt the planar representation 
of the twists and wrenches introduced in Section 4.8; that is, we define the 
twist of the ith link and the wrench acting on it as 3-dimensional arrays, 
namely, 

(6.110) 

where Wi is the scalar angular velo city of this link; Ci is the 2-dimensional 
velo city of its mass center, Ci; ni is the scalar moment acting on the link; 
and f i is the 2-dimensional force acting at Ci' Moreover, the inertia dyad 
is now a 3 x 3 matrix, i.e., 

(6.111) 

with I i defined as the scalar moment of inertia of the ith link about an axis 
passing through its center of mass, in the direction normal to the plane of 
motion, while 0 is the 2-dimensional zero vector and 1 is the 2 x 2 identity 
matrix. 

Furt hermore , the Newton-Euler equations of the ith link take on the 
forms 

ni = Iiwi 

f i = mici 

and so, these equations can now be cast in the form 

• W C 
Miti = wi + w i , i = 1, ... , n 

(6.112a) 

(6.112b) 

(6.113) 

where we have decomposed the total wrench acting on the ith link into its 
working component W r, supplied by the environment and accounting for 
motor and joint dissipative torques, and wf, the nonworking constraint 
wrench, supplied by the neighboring links via the coupling joints. The lat
ter, it is recalled, develop no power, their sole role being to keep the links 
together. An essential difference from the general 6-dimensional counter
part of the foregoing equation, namely, eq.(6.49), is the lack of a quadratic 
term in Wi in eq.(6.112a) and consequently, the lack of a WiMiti term in 
eq.(6.113). 

Upon assembling the foregoing 3n equations of motion, we obtain a 
system of 3n uncoupled equations in the form 

Mt=ww +wc 



www.manaraa.com

252 6. Dynamics of Serial Robotic Manipulators 

Now, the wrench w W accounts for active forces and moments exerted on 
the manipulator, and so we can decompose this wrench into an actuator
supplied wrench w A and a gravity wrench w G • 

In the next step of the formulation, we set up the kinematic constraints 
in linear homogeneous form, as in eq.(6.51), with the difference that now, 
in the presence of n kinematic pairs of the revolute or the prismatic type, 
K is a 3n x n matrix. Moreover, we set up the twist-shape relations in the 
form of eq.(6.57), except that now, T is a 3n x n matrix. The derivation of 
the Euler-Lagrange equations for planar motion using the natural orthog
onal complement, then, parallels that of general 3-dimensional motion, the 
model sought taking the form 

I(O)Ö + C(O, iJ)iJ = T + 'Y + Ö 

with the definitions 

1(0) == TTMT, C(O,iJ) == TTMT, 

T == TTwA, 'Y == TTwG, Ö == TTwD 

(6. 114a) 

(6.114b) 

(6. 114c) 

We can illustrate best this formulation with the aid ofthe example below. 

Example 6.6.1 (Dynamics of a planar three-revolute manipulator) Derive 
the model 0/ the manipulator 0/ Fig. 4.24, under the assumptions 0/ Ex
ample 6.3.1, but now using the natural orthogonal complement. 

Solution: We start by deriving all kinematics-related variables, and thus, 

Wl = (h, W2 = Öl + Ö2, W3 = Öl + Ö2 + Ö3 

Furthermore, 

tl = Öltu 
t2 = Öltl2 +Ö2t22 

t3 = ih tl3 + Ö2t 23 + Ö3t33 

where 

tu = [E~u] = [E~J = [(1/2~EaJ 
t21 = [E~12] = [E(al ~ P2)] = [E(al + ~1/2)a2)] 
t22 = [E~22] = [E~J = [(1/2~EaJ 
t31 = [E~13] = [E(al + ~2 + P3)] = [E(al + a2 ~ (1/2)a3) ] 

t32 = [E~23] = [E(a2 ~ P3)] = [E(a2 + ~1/2)a3) ] 
t33 = [E~J = [(1/2~Ea3] 
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and hence, the 9 x 3 twist-shaping matrix T becomes 

T= 

1 
{1/2)Ea l 

1 
E{al + (1/2)a2) 

1 
E{al + a2 + (1/2)a3) 

o 
o 
1 

{1/2)Ea2 

1 
E{a2 + (1/2)a3) 

o 
o 
o 
o 
1 

(I/2)Ea3 

The 9 x 9 matrix of inertia dyads of this manipulator now takes the form 

with each 3 x 3 Mi matrix defined as 

Now, the 3 x 3 generalized inertia matrix is readily derived as 

whose entries are given below: 

In = tflM lt n + trlM 2t 21 + trlM3t31 

h2 = trI M2t 22 + trI M 3t 32 = 121 

113 = trI M3t 33 = 131 

122 = tr2M2t 22 + tr2M 3t 32 
123 = tr2M 3t 33 = 132 
133 = tf3M 3t 33 

U pon expansion, the above entries result in exactly the same expressions 
as those derived in Example 6.3.1, thereby confirming the correctness of 
the two derivations. Furthermore, the next term in the Euler-Lagrange 
equations is derived below. Here, we will need T, which is readily derived 
from the above expression for T. In deriving this time-derivative, we note 
that in general, for i = 1,2,3, 

and hence, 

T=-

ä; = wiE~, E2~ = -ai 

o 
{I/2)Ola l 

o 
01al + {I/2)OI2a2 

o 

o 
o 
o 
o 
o 

{I/2)OI23a3 



www.manaraa.com

254 6. Dynamics of Serial Robotic Manipulators 

where Öl2 and Öl23 stand für Öl + Ö2 and Öl + Ö2 + Ö3, respectively. 
We nüw can perfürm the prüduct TTMT, whüse (i,j) entry will be 

represented as P,ij. Belüw we display the expressiüns für these entries: 

1 . 1 . 
P,u = -"2 [m2ala2s2 + m3(2ala2 s2 + ala3s23)]02 - "2 (ala3 s23 + a2a3s3)03 

1 . 
P,l2 = -"2 [m2 al a2s2 + m3(2ala2 s2 + ala3s 23)]Ol 

1 . 
-"2 [m2ala2s2 + m3(2ala2 s2 + ala3s23)]02 

1 . 
-"2m3(ala3s23 + a2a3s3)B3 

1 . . . 
P,l3 = -"2m3(ala3s23 + a2a3s3)(Ol + O2 + (3) 

1 . 1 . 
P,2l = "2 [m2al a2s2 + m3(2ala2 s2 + ala3s23)]Ol - "2m3a2a3s303 

1 . 
P,22 = - "2m3a2a3s303 

1 ... 
P,23 = -"2m3a2a3s3(Ol + O2 + (3) 

1 .. 
P,3l = "2 [m3(ala3 s23 + a2a3s3)Ol + a2a3s302] 

1 .. 
P,32 = "2m3a2a3s3(Ol + (2) 

P,33 = 0 

N üw, let us define 
V:=TTMT8 

whose three compünents are given below: 

VI = -[m2ala2s2 + m3(2ala2 s2 + aIa3s23)]Ö1Ö2 

-m3(ala3s23 + a2a3s3)Ö1Ö3 
1 ·2 

-"2[m2a1a2s2 + m3(2ala2s2 + ala3s23)]02 

.. 1 ·2 
-m3(ala3s23 + a2a3s3)0203 - "2m3(ala3s23 + a2a3s3)03 

1 ·2· . 
V2 = "2 [m2 ala2s2 + m3(2ala2 s2 + ala3s23)]Ol - m3a2a3s30103 

.. 1 ·2 
-m3a2a3s30203 - "2m3a2a3s303 

1 ·2·· 1 ·2 
V3 = "2m3(ala3s23 + a2a3s3)Ol + m3a2a3s30102 + "2m3a2a3s303 

The mathematical model sought, thus, takes the form 

I(O)Ö + v(O, 8) = T + '"Y 
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where 6 = 0 because we have not included dissipation. Moreover, , is 
derived as described below: Let wf be the gravity wrench acting on the 
ith link, w G then being 

and 

w? = [ -~19j]' wf = [-~29j]' wr = [-~39j] 
Therefore, 

But 

Hence, 

TE· T· B a l ~ = -all = -al cos 1 

afEj = -afi = -a2 cos(Bl + (2 ) 

afEj = -afi = -a3 cos(Bl + B2 + (3 ) 

[ 
-mlalCl - 2m2(alcl + a2 c 12) - 2m3(alcl + a2C12 + a3c 123) 1 

-m2a 2C12 - 2m3(a2c12 + a3c 123) 

-m3a 3C123 

with the definitions for Cl, C12, and C123 introduced in Example 6.3.1. As 
the reader can verify, the foregoing model is identical to the model derived 
with the Euler-Lagrange equations in that example. 

Example 6.6.2 (Dynamies of a spatial 3-revolute manipulator) The ma
nipulator of Fig. 4.15 is reproduced in Fig. 6.7, in a form that is kine
matically equivalent to the sketch of that figure, but more suitable for the 
purposes of this example. For this manipulator, (i) find its inertia matrix 
at the configuration depicted in that figure; (ii) find the time-rate of change 
of the inertia matrix under a maneuver whereby fit = fh = iJ3 = P S-l and 
Öl = Ö2 = Ö3 = 0; and (iii) under the same maneuver, find the centrifugal 
and Coriolis terms of its governing equation. Furthermore, assume that all 
links are identical and dynamically isotropie. What we mean by "dynami
cally isotropie" is that the moment of inertia of all three links about their 
mass centers are proportional to the 3 x 3 identity matrix, the proportion
ality factor being I. M oreover, all three links are designed so that the mass 
center of each is located as shown in Fig. 6.7. 
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FIGURE 6.7. Mass-center locations of the manipulator of Fig. 4.19. 

Solution: 

(i) Henceforth, we represent all vectors and rnatrices with respect to the 
FI-frarne of Fig. 6.7, while denoting by i, j, and k the unit vectors par
allel to the Xl> Yl> and ZI axes, respectively. Under these conditions, 
we have, for the unit vectors parallel to the revolute axes, 

el = k, e2 = j, e3 = i 
while vector a; is directed frorn the origin of F i to that of Fi+l, for 
i = 1,2,3. Hence, 

al = -ai, a2 = a(j - k), a3 = a(i + k) 

Likewise, the position vectors of the rnass centers, Pi' for i = 1, 2, 
and 3, with respect to the origins of their respective frarnes, are given 
by 

1 (0 0) 
PI = i a -l+J 

P2 = ~a(i + 2j - k) 

P3 = ~a(2i + k) 

We can now calculate the various 6-dirnensional arrays t ij , for i = 1, 
2, 3, and j = 1 till i, Le., 

t _ [ el ] _ [ k ] 
11 - el x PI - -(a/2)(i + j) 
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t _ [ e1 ] _ [ k ] 
21 - e1 X (al + P2) - -(a/2)(2i + j) 

t22 = [e2 ': P2] = [ -(a/2~(i + k) ] 

t31 = [eI X (al; a2 + P3)] = [ -:i] 
t32 = [e2 X (:~ + P3)] = [ -(a/2)1i + 2k)] 

t33 = [e3 :3 pJ = [_(ai/2)j] 

and so, the 18 X 3 matrix T is given by 

k 0 0 
-(a/2)(i + j) 0 0 

T= 
k j 0 

-(a/2)(2i + j) -(a/2)(i + k) 0 
k j i 

-ai -(a/2)(i + 2k) -(a/2)j 

Moreover, the 6 X 6 inertia dyad of the ith link takes the form 

[Il 0] 
Mi = 0 ml ' i=1,2,3 

with 1 and 0 denoting the 3 x 3 identity and zero matrices, respec
tively. Thus, the 18 x 18 system mass matrix is given as 

M = diag(MI, M 2 , M 3 ) 

and the 3 x 3 generalized inertia matrix I of the manipulator is 

I=TTMT 

whose entries are given by 

111 = tf1M1tl1 + tr1 M 2t 21 + tr1 M 3t 31 

112 = trI M 2t 22 + trI M 3t 32 = 121 

ft3 = trI M 3t 33 = 131 

h2 = tr2M2t22 + tr2M 3t 32 

123 = tr2M 3t 33 = h2 

h3 = tr3M 3t 33 

Upon expansion, the foregoing expressions yield 



www.manaraa.com

258 6. Dynamics of Serial Robotic Manipulators 

(ii) Now, the time-rate of change of I, i, is calculated as 

i = TTMT + TTMTT + TT (WM - MW)T 

We proceed first to compute T. This time-derivative is nothing but 
the 18 x 3 matrix whose entries are the time-derivatives of the entries 
ofT, namely, tij, as given in eq.(6.84), which is reproduced below for 
quick reference: 

tij = [(Wj x e3~~ ;ije~ ej x rij] 

where rij is given, in turn, by 

rij = Wj x aj + ... + Wi-l x ai-l + Wi x Pi 

Hence, we will need vectors Wi, for i = 1, 2, and 3. These are 
calculated below: 

Wl = Ölel = pk 

W2 = Ölel + Ö2e2 = p(j + k) 

W3 = Ölel + Ö2e2 + Ö3e3 = p(i + j + k) 

We have, therefore, 

tu = [eI x PI ~ el x pJ = [eI x (:1 x PI)] = p [(1/2)~(i - j) ] 

t 2l = [eI x (al + P2) ~ el x (äl + P2)] 

= [eI x (Wl x ~ +W2 x P2)] =p [(l/~)aj] 
t 22 = [. e2 .] 

e2 x P2 + e2 x P2 

= [(pel x e2) x P2 ~~2x xek(el + e2) x P2]] 

= p [ _(1/2)a;i+ j - k)] 
t 3l = [eI x (al + a2 + P3) ~ el x (äl + ä2 + P3)] 

= [eI x (Wl x al +:2 x a2 + W3 x P3) ] 

= [eI x [pel x al +p(ei +e2) ~ a2 +p(ei +e2 +e3) x P3]] 

= p [-~j] 
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t32 = [e2 X (a2 + P3) ~ e2 X (ä2 + P3) ] 

= [(pel X e2) X (a2 + P3) ~~~ e: [(eI + e2) X (a2 + P3)]] 

= p [ -(1/2)a(~: + j - k) ] 

t33 = [e3 X P3 ~ e3 X pJ = [(W2 X e3) X ;: ~:: X (W3 X P3)] 

[ p(el +e2) X e3 ] 
= p[(el + e2) X e3] X P3 + pe3 X [(eI + e2 + e3) X P3] 

[ p(e2-ed ] 
- p(e2 - el) X P3 + p[(e3 . P3)(el + e2 + e3) - P3] 

= p [(1/2j):Cik_ k) ] 

Now, let 

whose entries are displayed below: 

Upon performing the foregoing operations, we end up with 

[
-(1/4)a2m (7/4)a2m 

TTMT = P -(1/2)a2m 0 
(1/2)a2m (1/4)a2m- I 

the second term of the above expression for i simply being pT. In 
order to compute the third term, we need the products WM and 
MW. However, it is apparent that the latter is the negative of the 
transpose of the former, and so, all we need is one of the two terms. 
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(iii) 

Furthermore, note that since both matrices M and Ware block
diagonal, their product is block-diagonal as weH, namely, 

where for i = 1, 2, and 3, 

with 0 denoting the 3 x 3 zero matrix, while ni is the cross-product 
matrix of vector Wi. Moreover, 

W.M. = [In i 0] •• 0 0 

Therefore, WiMi is skew-symmetric; as a consequence, WM is also 
skew-symmetric, and the difference WM - MW vanishes. Hence, in 
this particular case, ireduces to 

That is, 

Now, the term of Coriolis and centrifugal forces can be computed in 
two ways, namely, (a) as (TTMT + TTWMT)iJ, and (b) by using 
the Newton-Euler algorithm with Öi = 0, for i = 1, 2, and 3. We 
proceed in these two ways in order to verify the correctness of our 
results. 

In proceeding with the first alternative, we already have the first term 
in the foregoing parentheses; the second term is now computed. First, 
we note that 

with 0 defined as the 6-dimensional zero vector. The foregoing non
trivial 6-dimensional arrays are computed below: 
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= [PI(j +Ok) x k] = pI [~] 

W 2M 2t 22 = [Ig2 g] [ -(a/2~(i + k)] = [I~~] 
= [PI(j +Ok) x j] = pI [~i] 

W 3M3t31 = [Ig3 g] [ -~i] = [I~3k] 
= [PI(i + j : k) x k] = pI [i ~ j] 

W 3M 3t 32 = [Ig3 g] [ -(a/2)~i + 2k)] = [I~~] 
= [PI(i + j 0+ k) x j] = pI [ -i: k] 

W 3M3t33 = [Ig3 g] [ -(a~2)j] = [I~3i] 
= [PI(i + j 0+ k) Xi] = pI [j ~ k] 

where 0 now denotes the 3-dimensional zero vector. Therefore, 

0 0 0 
0 0 0 

WMT=pI 
-i 0 

0 0 0 
i-j -i+k j-k 

0 0 0 

and hence, 

TTWMT ~ pI [ ~1 1 y] 0 
-1 

which turns out to be skew-symmetric. Notice, however, that this will 
not always be the case. The reason why the above product turned out 
to be skew-symmetric in this example is that the individual matrices 
W i and Mi commute, a consequence of the assumed inertial isotropy, 
which leads to the isotropy of matrices I i , for i = 1, 2, and 3. Now, 
we have 

with A defined as 

[
-(3/4)a2m (7/4)a2m + I -(1/2)a2m - 2I] A == -(1/2)a2m - I 0 (1/4)a2m + 2I 

(3/4)a2m + I (1/4)a2m - 21 0 
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Hence, the term of Coriolis and centrifugal forces is 

thereby completing the desired calculations. 

Now, in order to verify the correctness of the above results, we will com
pute the same term using the Newton-Euler algorithm. To this end, we set 
iJi = 0, for i = 1, 2, and 3, in that algorithm, and calculate the desired 
expression as the torque required to produce the joint rates given above. 

Since we have already calculated the angular velocities, we will skip these 
calculations here and limit ourselves to the mass-center velocities, angular 
accelerations, and mass-center accelerations. We thus have 

Cl = Wl X PI = pk x ( -~a) (i - j) = -~ap(i + j) 

C2 = Cl + Wl x (al - PI) + W2 X P2 

= ~ap[-i - j - k x (i + j) + (j + k) x (i + j - k)] = -~ap(3i + j + k) 

C3 = C2 + W2 x (a2 - P2) + W3 X P3 

= -~ap[3i + j + k + (j + k) x (i + k) - (i + j + k) x (2i + k)] 

= -~ap(3i + j + 2k) 

Now, the acceleration calculations are implemented recursively, which 
yields 

Wl = elel = 0 

W2 = Wl + Wl x Ö2e2 = p2k x j = _p2i 

W3 = W2 + W2 x Ö3e3 = _p2i + p2(j + k) x i = _p2(i - j + k) 

Cl = Wl X PI + Wl X (Wl x PI) = ap2k x [k x ~ (-i + j)] = ~ap2(i - j) 

C2 = Cl + Wl x (al - PI) + Wl x [Wl x (al - PI)] + W2 x P2 

+ W2 X (W2 x P2) = ~ap2(i - j) + 0 + ~ap2(i + j) 

_~ap2(j + 2k) + ~ap2( -2i - 3j + 3k) 

= ~ap2( -4j + k) 

C3 = C2 + W2 x (a2 - P2) + W2 x [W2 x (a2 - P2)] + W3 x P3 

( ) 1 2 ( 4' k) 1 2 . 1 2 (' • k) +W3 X W3 X P3 = 2ap - J + - 2ap J + 2ap 21- J + 
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1 2(' • k) 1 2( 3' 3') + "2 ap I - J - 2 + "2ap - 1+ J 

= -2ap2j 

With the foregoing values, we can now implement the inward Newton-Euler 
recursions, namely, 

f[ = m3c3 - f = -m(2ap2j) - 0 = -2amp2j 

nf = I3w3 + W3 X I3w3 - n + P3 X f[ 
= -Ip2(i - j + k) + 0 - 0 - a2mp2( -i + 2k) 

= -Ip2(i - j + k) + a2mp2(i - 2k) 

fP .. r.P 1 2 ( 4' k) 2· 1 2 ( 6' k) 2 = m2c2 + 3 = "2 amp - J + - amp J = "2 amp - J + 

nf = I2w2 + W2 X I2w2 + nf + (a2 - P2) x f[ + P2 X f! 

= _p2 Ii + 0 - I p2(i - j + k) + ~a2mp2(i - 2k) + a2mp2i 

+ ~a2mp2( -4i - j - 6k) 
4 

= -Ip2(2i - j + k) + ~a2mp2(2i - j - lOk) 

fP •• fP 1 2(") 1 2( 6' k) 1 =mlCl+ 2 = "2 amp I-J + "2 amp -J+ 

= ~amp2(i - 7j + k) 

nf = IlWl + Wl X IlWl + nf + (al - PI) x f! + PI x fi 

= 0 + 0 - p2I(2i - j + k) + ~a2mp2(2i - j - lOk) 

1 2 2(' . 6k) 1 2 2(' . 6k) -:ta mp I - J - + :ta mp 1+ J -

= -Ip2(2i - j + k) + ~a2mp2(2i + j + 2k) 

and hence, 

P I 2 2 2 73 = n3 . e3 = - P + a mp 

P I 2 1 2 2 72 = n2 . e2 = P -:ta mp 

P 12 1 22 71 = n l . el = - P +"2a mp 

thereby completing the calculation of the term containing Coriolis and 
centrifugal forces, Le., 
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As the reader can verify, the natural orthogonal complement and the New
ton-Euler algorithm produce the same result. In the process, the reader 
may have realized that when performing calculations by hand, the Newton
Euler algorithm is more prone to errors than the natural orthogonal com
plement, which is more systematic, for it is based on matrix-times-vector 
multiplications. 

6.6.2 Algorithm Complexity 

The complexity of this algorithm is analyzed with regard to the three items 
involved, namely, (i) the evaluation of L, (ii) the solution of systems (6.108a 
& b), and (iii) the computation of T. 

The evaluation of L involves, in turn, the three following steps: (a) 
the computation of P; (b) the computation of I; and (c) the Cholesky 
decomposition of I into the product LTL. 

(La) In the computation of P, it is recalled that H i , ai, and Pi' and con
sequently, Oi == ai - Pi' are constant in F Hb which is the frame fixed 
to the ith link. Moreover, at each step of the algorithm, both revo
lute and prismatic pairs are considered. If the jth joint is arevolute, 
then the logical variable R is true; if this joint is prismatic, then R 
is false. Additionally, it is recalled that eHb in Fi-coordinates, is 
simply the last column of Qi. The columnwise evaluation of P, with 
each Pij array in Fi+l-coordinates, is described in Algorithm 6.6.1. 
Note that in this algorithm, rij is calculated recursively from ri-l,j' 
To do this, we use the relation between these two vectors, as displayed 
in Fig. 6.8. 

• • • 

L$ 
FIGURE 6.8. Recursive calculation of vectors rij. 
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Algorithm 6.6.1: 

For j = 1 to n step 1 do 
rjj f- [Pjlj+l 

Pjj f- [nj~j:jrjj L+l 
For i = j + 1 to n step 1 do 

ej f- Qf[ ej li 
if R then 

enddo 
enddo 

else 

endif 

Algorithm 6.6.2: 

rij f- Qf[ri-l,j +t5i- 1 li + [pili+l 

Pij f- [ni~i:jrij]i+l 

For j = 1 to n step 1 do 

enddo 

I jj f- E~=j[prjPkj lk+l 
For i = j + 1 to n step 1 do 

I ij f- I ji f- E~=i[priPkj lk+l 
enddo 

(i. b) Now we go on to the computation of I, as described in Algorithm 6.6.2. 
In that algorithm, the subscripted brackets indicate that the vectors 
inside these brackets are represented in Fk+l coordinates. 

(i.c) Because the Cholesky decomposition of a positive-definite matrix is 
a standard item, it is not discussed here. This step completes the 
computation of L. 

(ii) The solution ofsystems (6.108a & 6.108b) is a standard issue as weH, 
and hence, needs no furt her discussion. 
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(iii) The term T is computed using the recursive Newton-Euler formula
tion, as discussed in Section 6.4. To do this, we calculate the afore
mentioned term by setting Ö = 0 in that procedure, which intro
duces a slight simplification of the complexity of the inverse-dynamics 
algorithm. 

Below we determine the computational complexity of each of the forego
ing steps. 

(La) This step includes Algorithm 6.6.1, which involves two nested do
loops. The first statement of the outermost loop involves no floating
point operations; the second statement involves (a) one multiplication 
of a matrix by a vector, (b) one cross product, and (c) one multipli
cation of a scalar by a vector. Of the last three items, (a) is done off
line, for the matrix and the vector factors are both constant in F j +1-

coordinates, and so, this operation is not counted. Moreover, item 
(b) is nothing but the cross product of vector [ej ]H1 == [0, 0, 1 V 
by vector rjj. A similar operation was already discussed in connec
tion with Algorithm 4.1 and was found to involve zero floating-point 
operations, for the result is, simply, [ej x r jj ]j+l = [ -y, x, O]T, with 
x and y denoting the XH1 and YJ+1 components of rjj. Hence, item 
(b) requires no floating-point operations, while item (c) requires 2n 
multiplications and zero additions. 

The innermost do-Ioop, as pertaining to revolute manipulators, in
volves two coordinate transformations between two consecutive coor
dinate frames, from F i - to Fi+l-coordinates, plus two vector sums, 
which consumes 16(n - i) multiplications and 14(n - i) additions; 
this loop also consumes one matrix-times-vector multiplication, one 
cross product and one scalar-times-vector multiplication, which re
quires 18(n - i) multiplications and 12(n - i) additions. Thus, the 
total numbers of operations required by this step, for an n-revolute 
manipulator, are Mia multiplications and Aia additions, as given 
below: 

n 

Mia = 2n + L34(n - i) = 17n2 -15n (6.1l5a) 
i=l 

n 

A ia = L 26(n - i) = 13n2 - 13n (6.1l5b) 
i=l 

the presence of prismatic pairs reducing the above figures. 

(i.b) This step, summarized in Algorithm 6.6.2, is also composed of two 
do-Ioops, each containing the inner product of two 6-dimensional ar
rays, and hence, requires six multiplications and five additions. More
over, in the outermost do-Ioop, this operation is performed n times, 
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whereas in the innermost loop, L~=l (n - i) times, Le., n(n - 1)/2 
times. Thus, the step requires M ib multiplieations and Aib additions, 
as given below: 

5 2 5 
A-b = -n +-n , 2 2 (6.116) 

(i.e) This step performs the Cholesky deeomposition of an n x n symmet
rie and positive-definite matrix, a standard operation that requires 
Mic multiplieations and Aic additions (Dahlquist and Björek, 1974), 
namely, 

(ii) 

1 3 1 2 1 
M· = -n + -n +-n ,c 6 2 3' 

1 3 1 2 1 
A- = -n + -n +-n 

u 6 2 3 (6.117) 

In this step, the two tri angular systems of equations, eqs.(6.108a & 
b), are solved first for x and then for Ö. The numbers of operations 
it takes to solve eaeh of the two systems, as derived by Dahlquist 
and Björek (1975), are repeated below for quiek referenee; these are 
labelled M ii and A ii , respeetively, i.e., 

(6.118) 

(iii) In this step, T is eomputed from inverse dynamics, with w D = 0 
and Ö = O. If this ealculation is done with the Newton-Euler formu
lation, we then have the eomputational eosts given in eq.(6.44), and 
reprodueed below for quiek referenee: 

Miii = 137n - 22, Aiii = 110n - 14 (6.119) 

Because of the simplifieations introduced by setting the joint accelerations 
equal to zero, the aforementioned figures are, in fact, slightly lower than 
those required by the general recursive Newton-Euler algorithm. 

Thus, the total numbers of multiplieations and additions required for the 
forward dynamics of an n-revolute, serial manipulator are 

1 3 43 2 376 
MI = -n + -n + -n - 22 

623 ' 

In particular, for a six-revolute manipulator, one obtains the figures 
shown below: 

MI = 1,540, AI = 1,227 (6.121) 

We have redueed the foregoing figures even more by introducing a modified 
Denavit-Hartenberg labeling of co ordinate frames and very careful manage
ment of the computations involved. Indeed, in (Angeles and Ma, 1988), the 
complexity of the algorithm for a six-revolute manipulator of arbitrary ar
chitecture is redueed to 1,353 multiplieations and 1,165 additions. Sinee 
the details of this simplification lie beyond the scope of the book, we do 
not elaborate on this item here. 
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6.6.3 Simulation 

The purpose of the algorithm introduced in the foregoing subsection is to 
enable us to predict the behavior of a given manipulator under given initial 
conditions, applied, torques, and applied loads. The ability of predicting 
this behavior is important for several reasons: for example, in design, we 
want to know whether with a given selection of motors, the manipulator 
will be able to perform a certain typical task in a given time frame; in 
devising feedback control schemes, where stability is a major concern, the 
control engineer cannot risk a valuable piece of equipment by exposing it 
to untested control strategies. Hence, a facility capable of predicting the 
behavior of a robotic manipulator, or of a system at large, for that matter, 
becomes imperative. 

The procedure whereby the motion of the manipulator is determined 
from initial conditions and applied torques and loads is known as simula
tion. Since we start with a second-order n-dimensional system of ordinary 
differential equations (ODE) in the joint variables of the manipulator, we 
have to integrate this system in order to determine the time-histories of 
all joint variables, which are grouped in vector (J. With current software 
available, this task has become routine work, the user being freed from 
the quite demanding task of writing code for integrating systems of ODE. 
Below we discuss a few issues pertaining to the implementation of the 
simulation-related algorithms available in commercial software packages. 

As a rule, simulation code requires that the user supply astate-variable 
model ofthe form of eq.(6.46), with the state-variable vector, or state-vector 
for brevity, x, and the input or control vector u defined as 

x == [:] _ [:], u(t) = r(t) (6.122) 

With the above definitions, then we can write the state-variable equations, 
or state equations for brevity, in the form of eq.(6.46), with f(x, r) given 
by 

(6.123) 

thereby obtaining a system of 2n first-order ODE in the state-variable 
vector x defined above. Various methods are available to solve the ensu
ing initial-value problem, all of them being based on a discretization of 
the time variable. That is, if the behavior of the system is desired in the 
interval to ::; t ::; t F, then the software implementing these methods pro
vides approximations {Yk }f to the state-variable vector at a discrete set 
of instants, { tk }{;', with tN == tF. 

The variety of methods available to solve the underlying initial-value 
problem can be classified into two main categories, explicit methods and 
implicit methods. The former provide Yk+l explicitly in terms of previously 
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computed values. On the contrary, implicit methods provide Yk+l in terms 
of previously computed valu!,!s Yk, Yk-l, ... , etc., and Yk+l itself. For ex
ample, in the simplest of implicit methods, namely, the backward Euler 
method, we can approximate the integral of f in the interval tk S t S tk+l 
by resorting to the tmpezoidal rule (Kahaner, Moler, and Nash, 1989), 
which leads to the expression 

(6.124) 

In eq.(6.124), hk is the current time-step tk+l - tk and f(tk+l, Yk+l) can be 
an arbitrary function of Yk+l' If this function is nonlinear in the said vari
able, then, a direct-as opposed to itemtive--computation of Yk+l is very 
unlikely. Hence, most likely an iterative scheme must be implemented at ev
ery integration stage of an implicit method. While this feature might render 
implicit schemes unattractive, they offer interesting advantages. Indeed, the 
aforementioned iterative procedure requires a tolerance to decide when and 
whether the procedure has converged. The convergence criterion imposed 
thus brings about a self-correcting effect that helps keep the unavoidable 
truncation error under control. This error is incurred when approximating 
both the time derivative x and the integral of f by floating-point operations. 

Current software provides routines for both implicit and explicit meth
ods, the user having to decide which method to invoke. Of the explicit meth
ods in use, by far the most common ones are the Runge-Kutta methods. Of 
these, there are several versions, depending on the number of evaluations of 
the function f(ti, Yi), for various values of i, that they require. A two-stage 
Runge-Kutta method, for example, requires two function evaluations, while 
a four-stage Runge-Kutta method requires four. The self-correcting feature 
of implicit methods, not present in Runge-Kutta methods-to be sure, im
plicit Runge-Kutta methods also exist (Gear, 1971), but these are less com
mon than their explicit counterparts-is compensated for by a very clever 
strategy that consists of computing Yk+l using two Runge-Kutta schemes 
of different numbers of stages. What is at stake here is the magnitude of the 
local error in computing Yk+l, under the assumption that Yk is error-free. 
Here, the magnitude of the error is of order hP , where p is the order of the 
method in use. In Runge-Kutta methods, the order of the method is iden
tical to its number of stages. In general, a method is said to be of order p 
if it is capable of computing exactly the integral of an ordinary differential 
equation, provided that the solution is known to be a pth-degree polyno
mial. Now, upon computing Yk+l using two Runge-Kutta schemes with N 
and N + 1 stages, we can compare the two computed values reported by 
each method, namely, Yf+l and yJ:-i!/. If a norm of the difference of these 
two values is smaller than a user-prescribed tolerance, then the step size 
in use is acceptable. If not, then the step size is halved, and the process is 
repeated until the foregoing norm is within the said tolerance. The most 
common Runge-Kutta methods are those combining two and three stages 
and those combining four and five. 
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A drawback of Runge-Kutta methods is their in ability to deal with what 
are known as stiff systems, first identified by Gear (1971). As defined by 
Shampine and Gear (1979), a system of ordinary differential equations is 
said to be stiff if it is not unstable and its linear part-i.e., the linear part 
of the series expansion of f, evaluated at the current instant-comprises a 
coefficient matrix that has an eigenvalue with a negative real part whose 
absolute value is much greater than that of the other eigenvalues. In other 
words, stiff systems of ODE are stable systems with very different time 
scales. Thus, stiff systems are not inherently difficult to integrate, but they 
require a special treatment. Gear's method, which is implicit, provides ex
actly the means to handle stiff systems. However, methods like Runge
Kutta's, with excellent performance for nonstiff systems, perform rather 
poorly for stiff systems, and the other way around. The mathematical mod
els that arise in robotic mechanical systems are likely to be stiff because of 
the various orders of magnitude of the physical parameters involved. For 
example, robotic manipulators are provided, usually, with links elose to the 
base that are very robust and hence, heavy and with links far from the base 
that are very light. As a consequence, when simulating robotic mechanical 
systems, a provision must be made for numerical stiffness. 

Commercial software for scientific computations offers Runge-Kutta meth
ods of various orders, with combinations thereof. For example, IMSL offers 
excellent FORTRAN routines, like IVPRK, for the implementation ofRunge
Kutta methods, while Matlab's Simulink toolbox offers the C functions 
rk23 and rk45 for the implementation of second-and-third and fourth
and-fifth-order Runge-Kutta methods. With regard to stiff systems, IMSL 
offers a subroutine, IVPAG, implementing both Adams's and Gear's meth
ods, while Simulink offers the adams and gear functions for the imple
mentation of either of these. Since Matlab is written in C, communication 
between Matlab and FORTRAN programs is not as direct as when using 
IMSL, which may be disappointing to FORTRAN users. Details on linking 
FORTRAN code with Matlab and other related issues are discussed in the 
pertinent literature (Etter, 1993). Moreover, the FORTRAN SDRIV2 sub
routine (Kahaner, Moler, and Nash, 1989) comprises features that allow it 
to handle both stiff and nonstiff systems. 

6.7 Incorporation of Gravity into the Dynamics 
Equations 

Manipulators subjected to gravity fields have been discussed in Section 6.4 
in connection with the Newton-Euler algorithm and with Kane's equations. 
As found in that section, gravitational forces can be incorporated into the 
underlying models without introducing any major modifications that would 
increase the computational load if the method of Luh, Walker, and Paul 
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(1980) is adopted. Within this approach, gravitational forces are taken into 
account by defining the acceleration of the mass center of the Oth link, the 
base link, as equal to -g, the negative of the gravity-acceleration vector. 
The effect of this approach is to propagate the gravity effect into all the links 
composing the manipulator. Thus, the kinematics algorithm of Section 6.4 
need not be modified in order to include gravitational forces, for all that is 
needed is to declare 

(6.125) 

If inverse dynamies is computed with the natural orthogonal complement, 
then the twist-rate of the first link will have to be modified by adding a 
nonhomogeneous term to it, thereby accounting for the gravity-acceleration 
terms. That is, 

(6.126) 

Otherwise, the foregoing algorithms require no modifications. Further
more, with regard to simulation, it is pointed out that the T term de
fined in eq.(6.107), and appearing in the right-hand side of eq.(6.108a), is 
computed from inverse dynamies with zero frictional forces and zero joint 
accelerations. 

6.8 The Modeling of Dissipative Forces 

Broadly speaking, frictional forces are of two basie types, namely, (i) vis
cous forces and (ii) Coulomb, or dry-friction, forces. The latter occur when 
contact between two solids takes place directly, the former when contact 
between the solids takes place via a viscous fluid, e.g., a lubricant. In the 
analysis of viscous fluids, a basic assumption is that the relative velocity 
between the fluid and the solid vanishes at the fluid-solid interface, i.e., at 
the solid boundary confining the fluid. Hence, a velocity gradient appears 
within the fluid, which is responsible for the power dissipation inside it. In 
fact, not all the velo city gradient within the fluid, but only its symmetrie 
part, is responsible for power dissipation; the skew-symmetric part of the 
velocity gradient accounts for a rigid-body rotation of a small fluid element. 
Thus, if a velo city field ver, t) is defined within a region n occupied by a 
viscous fluid, for a point of the fluid of position vector r at a time t, then, 
the velo city gradient grad(v) == EJvj8r, can be decomposed as 

grad(v) = D + W (6.127) 

where D and Ware the symmetrie and the skew-symmetric parts of the 
velocity gradient, Le., 

1 
D == "2 [grad(v) + gradT(v)], 

1 
W == "2[grad(v) - gradT (v) 1 (6.128) 
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The kinematic interpretation of D and W is given below: The former 
accounts for a distorsion of an infinitesimally small spherical element of 
fluid into a three-axis ellipsoid, the ratios of the time rates of change of the 
lengths of the three axes being identical to the ratios of the real eigenvalues 
of D; the latter accounts for the angular velo city of the ellipsoid as a rigid
body. Clearly, both D and W change from point to point within the fluid 
and also from time to time, i.e., 

D = D(r, t), W = W(r, t) (6.129) 

Since the skew-symmetric matrix W accounts only for the rotation of a 
differential element of fluid as a rigid body, it cannot be responsible for any 
energy dissipation, and hence, the only part that is responsible for this is 
D. In fact, for a linearly viscous, incompressible fluid of viscosity coefficient 
f.l, the power dissipated within n is given by 

(6.130) 

Now, if the motion of the lubricant separating the two cylindrical surfaces 
of arevolute pair is modeled as a purely tangential velo city field (Currie, 
1993), which assumes that the two cylinders remain concentric, then the 
foregoing expression for rrD leads to the dissipation function 

(6.131) 

where iJ is the relative angular speed between the two cylinders and the 
coefficient ß is a function of the lubricant viscosity and the geometry of 
the kinematic pair at hand. If the kinematic pair under study is prismatic, 
then we can model the motion of the lubricant between the two prismatic 
surfaces as a Couette flow between a pair of parallel surfaces of the sides of 
the prism. Under these conditions, then, the associated dissipation function 
ß takes on the same form of that given for arevolute pair in eq.(6.131), in 
which the sole difference is that iJ changes to b, the time rate of change of 
the associated joint variable. Of course, b is the relative speed between the 
two prismatic surfaces. Thus in any event, the dissipation function of the 
ith joint due to linearly viscous effects can be written as 

1 ·2 
ß· = -ß·(}· 

• 2" 
(6.132) 

where iJi changes to bi if the ith pair is prismatic. The dissipation function 
thus arising then reduces to 

~ l·T· 
ß = ~ ßi = -() B(} 

1 2 
(6.133) 
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where the constant n x n matrix B is given by 

(6.134) 

and hence, the generalized force 6v associated with linearly viscous effects 
is linear in the vector of joint rates, Ö, i.e., 

6v == _ 8~ = -BÖ 
80 

(6.135) 

and so, ~ = -(1/2)IID , which was introduced in eqs.(6.11) and (6.12a & 
b). 

Coulomb, or dry friction, is much more difficult to model. If Df denotes 
either the dissipative torque produced by Coulomb friction at arevolute 
or the dissipative force produced by Coulomb friction at a prismatic joint, 
and iJi the associated joint rate, then, the simplest model for the resulting 
generalized Coulomb-frictional force is 

ce' Di = -Ti sgn((}i) (6.136) 

where sgn(·) denotes the signum function, which is defined as +1 or -1, 
depending on whether its argument is positive or negative, and Tf is a 
positive constant representing a torque for revolute joints or a force for 
prismatic joints. The numerical value of this constant is to be determined 
experimentally. The foregoing model leads to a simple expression for the 
associated dissipation function, namely, 

(6.137) 

The Coulomb dissipation function for the overall manipulator is, then, 

n 

(6.138) 

The foregoing simplified model of Coulomb frictional forces is applica
ble when the relative speed between the two surfaces in contact is high. 
However, at low relative speed, that model becomes inaccurate. In robotics 
applications, where typical end-effector maximum speeds are of the order 
of 1 m/s, relative speeds are obviously low, and hence, a more accurate 
model should be introduced. Such a model should account for the empir
ical observation that Coulomb frictional forces are higher at low relative 
speeds and become constant at very high relative speeds. A model taking 
this fact into account has the form 

(6.139) 

where D:i, Ti, and Ei are constants associated with the ith joint and are 
to be determined experimentally. The foregoing expression readily leads to 
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the dissipation function associated with the same joint, namely, 

(6.140) 

and hence, the Coulomb dissipation function of the overall manipulator 
becomes 

ßC = t [TPIBil + E,. (1- e-"Iil liil)] 

1 " 

(6.141) 

Dissipation functions are very useful. On the one hand, they allow us 
to obtain associated generalized frictional forces when these are difficult, if 
not impossible, to express in formula form. On the other hand, since dis
sipation functions represent nonrecoverable forms of power, their integrals 
over time yield the dissipated energy. Moreover, the energy dissipated into 
unrecoverable heat can be estimated from an energy balance, and hence, 
the parameters associated with that dissipation function can be estimated 
with suitable identification techniques, once a suitable model for a dissipa
tion function is available. Furthermore, the said parameters appear in the 
generalized frictional forces as weIl. For this reason, knowing these parame
ters is essential for the modeling of the corresponding generalized frictional 
forces. 
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7 
Special Topics in Rigid-Body 
Kinematics 

7.1 Introd uction 

The motivation for this chapter is twofold. On the one hand, the determi
nation of the angular velo city and angular acceleration of a rigid body from 
point-velocity measurements is a fundamental problem in kinematics. On 
the other hand, the solution of this problem is becoming increasingly rele
vant in the kinematics of parallel manipulators, to be studied in Chapter 8. 
Moreover, the estimation of the attitude of a rigid body from knowledge of 
the Cartesian coordinates of some of its points is sometimes accomplished 
by time-integration of the velocity data. Likewise, the use of accelerometers 
in the area of motion control readily leads to estimates of the acceleration 
of a sample of points of a rigid body, which can be used to estimate the 
angular acceleration of the body, and hence, to better control its motion. 

In order to keep the discussion at the level of fundamentals, we assurne 
throughout this chapter that the information available on point velo city and 
point acceleration is error-free, a rat her daring assumption, but useful for 
understanding the underlying concepts at this level. Once the fundamentals 
are well understood, devising algorithms that yield the best estimates of 
angular velocity and acceleration in the presence of noisy measurements 
becomes an easier task. For the sake of conciseness, the problem of motion 
estimation will not be discussed in this book. 
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7.2 Computation of Angular Velocity from 
Point-Velo city Data 

The twist of a rigid body, as introdueed in eq.(3.74), defines eompletely the 
velo city field of a rigid body under arbitrary motion. Notice that the twist 
involves two veetor quantities, the angular veloeity and the velo city of a 
point of the rigid body. Sinee we are assuming that point-velocity data are 
available, the only item to be eomputed is the angular velo city of the body 
under study, whieh is the subjeet of this section. Onee the angular velo city 
is known and the velocities of a set of body points are available, other 
relevant motion parameters, like the loeation of the ISA, ean be readily 
determined. 

If the twist of a rigid body is known, the eomputation of the velo city of 
an arbitrary point of the body, of a given position vector, is straightforward. 
However, the inverse problem, namely, the eomputation of the twist of the 
motion under study given the veloeities of a set of points of known position 
veetors, is a more diffieult task. A solution to this problem is now outlined. 

First and foremost, we aeknowledge that the velocities of a minimum 
of three noneollinear points are needed in order to determine the angular 
velo city of the rigid body under study. Indeed, if the velo city of a single 
body point is known, we have no information on the angular motion of 
the body; if the velocities of two points are known, we ean ealculate two 
eomponents of the angular-veloeity veetor of the body, namely, those that 
are orthogonal to the line joining the two given points, thereby leaving 
one eomponent indeterminate, the one along that line. Therefore, in order 
to know the angular velo city of a rigid body in motion, we need at least 
the veloeities of three noneollinear points of the body-obviously, knowing 
only the velocities of any number of points along one line yields no more 
information than knowing only the veloeities of two points along that line. 
We thus assume heneeforth that we have three noneollinear points and that 
we know perfectly their velocities. 

Let the three noneollinear points of the body under study be denoted by 
{ Pi Hand let { Pi H be their eorresponding position veetors. The eentroid 
C of the foregoing set has a position veetor c that is the mean value of the 
three given position veetors, namely, 

1 3 

C == - LPi 
3 1 

(7.1) 

Likewise, if the velocities of the three points are denoted by Pi, and that 
of their eentroid by C, one has 

3 
. 1~. 
c == - LPi 

3 1 

(7.2) 
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From eq.(3.51), the velocity of the three given points can be expressed as 

Pi = C + O(Pi - c), i = 1,2,3 (7.3a) 

or 
Pi - C = O(Pi - c), i=1,2,3 (7.3b) 

Now, we define a 3 x 3 matrix Pas 

P == [PI - C P2 -c P3 - cl (7.4) 

Upon differentiation of both sides of eq.(7.4) with respect to time, one has 

(7.5) 

Thus, eqs.(7.3b) can be written in matrix form as 

(7.6) 

from which we want to solve for 0, or equivalently, for w. This cannot be 
done by simply multiplying by the inverse of P, because the latter is a 
singular matrix. In fact, as the reader can readily verify, any vector having 
three identical components lies in the nullspace of P, thereby showing that 
P is singular, its nullspace being spanned by that vector. Furthermore, 
notice that from eq.(7.3b), it is apparent that 

(7.7a) 

Upon assembling all three sealar equations above in one single vector 
equation, we obtain 

pTW=O (7.7b) 

a result that is summarized below: 

Theorem 7.2.1 The angular-velocity vector lies in the nullspace 0/ matrix 
pT, with P defined as in eq.(7.5). 

In order to find the desired expression for w from the above equation, 
we recall here a result which is proven in Appendix A: Let S be a skew
symmetrie 3 x 3 matrix and A be an arbitrary 3 x 3 matrix. Then, 

1 
vect(SA) = "2 [tr(A)1 - Al vect(S) (7.8) 

Upon application of the foregoing result, eq.(7.6) leads to 

Dw = veet(P) (7.9) 

where D is defined below and vect(O) is nothing but w: 
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1 
D == -[tr(P)l- P] 

2 
(7.10) 

Thus, eq.(7.9) can be solved for w as long as D is invertible. But since the 
three points are noncollinear, D is invertible if and only if tr(P) does not 
vanish. Indeed, iftr(P) vanishes, D becomesjust one-halfthe negative ofP, 
which as we saw above, is singular. Moreover, as we saw in Example 2.6.1, 
matrix P is not frame-invariant in the sense of eq.(7.4). Thus, tr(P) is not 
frame-invariant either. However, if the three given points are noncollinear, 
then it is always possible to find a coordinate frame in which the trace 
of P does not vanish. Furthermore, under the assumption that a suitable 
co ordinate frame has been chosen, the inverse of D can be proven to be 

D- 1 = al- ßp2 (7.11) 

where coefficients a and ß are given below: 

2 
a == tr(P) , 

4 
ß == tr(P)[tr(p2) _ tr2(p)] 

(7.12) 

By looking at expressions (7.12), one might think that D fails to be invert
ible not only when tr(P) vanishes, but also when the term in the brackets 
in the denominator of ß does. It is left as an exercise to the reader to prove 
that the foregoing term vanishes if and only if the three given points are 
collinear. 

Prom the foregoing discussion, it is clear that given the velocities and the 
position vectors of three noncollinear points of a rigid body, the angular 
velocity of the body can always be determined. However, the data, i.e., 
the velocities of the three given points, cannot be arbitrary, for they must 
conform to eq.(7.6) or to Theorem 7.2.1. Equation (7.6) states that the 
columns of matrix P must lie in the range of 0, while Theorem 7.2.1 states 
that w lies in the nullspace of P. However, prior to the computation of w, or 
equivalently, of 0, it is not possible to verify this condition. An alternative 
approach to verify the compatibility of the data follows: Since lines Pie 
belong to a rigid body, vectors Pi - c must remain of the same magnitude 
throughout a rigid-body motion. Moreover, the angles between any two of 
the said lines must be preserved throughout the motion as weH. This means 
that the conditions below must hold: 

(7.13) 

or in compact form, 
pTp=c (7.14) 

where the (i,j) entry ofthe constant matrix C is Cij, as defined in eq.(7.13) 
above. Upon differentiation of both si des of eq.(7.14) with respect to time, 
we obtain 
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Theorem 7.2.2 (Veloeity Compatibility) The velocities of three points of 
a rigid body satisfy the compatibility condition given below: 

pTp+pTp = 0 (7.15) 

with matrices P and P defined in eqs. (7.4) and (7.5) and 0 denoting the 
3 x 3 zero matrix. 

The above equation, then, states that for the given velocities of three 
points of a rigid body to be eompatible, the produet pTp must be skew
symmetrie. Note that the above matrix eompatibility equation represents 
six independent sealar equations that the data of the problem at hand must 
satisfy. There is a tendeney to negleet the foregoing six independent seal ar 
eompatibility conditions and to foeus only on the three scalar conditions 
drawn from the diagonal entries of the above matrix equation. This is, 
however, amistake, for these three conditions do not suffice to guarantee 
data compatibility in this context; all these three conditions guarantee is 
that the distance between any pair of points of the set remains constant, 
but they say not hing about the angles between the pairs of lines formed by 
each pair of points. 

Note, on the other hand, that the product ppT has no direct geometrie 
interpretation, although the difference tr(ppT)l- ppT does, as diseussed 
in Exercise C.7.8. Furthermore, while Theorem 7.2.2 states that matrix 
pTp is skew-symmetric, it says nothing about the product ppT. All we 
can say about this product is stated in the result below: 

Theorem 7.2.3 With matrices P and P defined in eqs.(7.4) and (7.5), 
the product ppT obeys the constraint 

(7.16) 

If m x n matrices are regarded as forming a vector space, then an inner 
product of two such matrices A and B, denoted by (A, B), can be defined 
as 

(A, B) == tr(ABT ) (7.17) 

two matrices being said to be orthogonal when the foregoing inner product 
vanishes. We thus have that Theorem 7.2.3 states that matrices P and P are 
orthogonal, a result that par allels that about the orthogonality of the rela
tive velocity of two points and the line joining them, as stated in eq.(3.53) 
and summarized in the ensuing theorem. The proof of Theorem 7.2.3 is left 
as an exercise. 

Example 7.2.1 The rigid cube shown in Fig. 7.1 moves in such a way 
that vertices PI, P2 , and P3 undergo the velocities shown in that figure, for 
three different possible motions. The length of the sides of the cube is 1, and 
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(a) (b) (c) 

FIGURE 7.1. A rigid cube undergoing a motion determined by the velocities of 
three of its points. 

the velocities all have magnitude v'2 in Figs. 7.1a and c; these velocities 
are of unit magnitude in Fig. 7.1b. Furthermore, in the motion depicted in 
Fig. 7.1c, the velocity of P3 is parallel to line P4 P3 , whereas that of P2 is 
parallel to line PI P3 . Out of the three different motions, it is known that at 
least one is compatible. Identify it. Moreover, compute the angular velocity 
of the compatible motion. 

Solution: Let Pi denote the velo city of Pi, of position vector Pi. Each pro
posed motion is then analyzed: (a) The projection of PI onto PI P2 is 1, 
but that of P2 onto the same line is 0, and hence, this motion is incom
patible; (b) Again, the projection of PI onto PI P2 is 1, but that of P2 
onto the same line vanishes, and hence, this motion is also incompatible. 
Thus, the only possibility is (c), which is now analyzed more formally: Use 
a dextrous-right-handed-rectangular coordinate frame with origin at PI, 
axis Y along PI P2 , and axis Z parallel to P2 P3 • All vectors and matrices 
are now represented in this coordinate frame, and hence, 
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Thus, 

Now matrices P and P are constructed: 

P = ~ [i ~ =~l 
3 -2 1 1 

Furthermore, 

which is skew-symmetric, and hence, the motion is compatible. Now, matrix 
D is computed: 

D == ~[ltr(P) - P] = ~ [~ ~ ~1l 
2 6 1 1 1 

The angular velo city w is computed as the solution to 

where 

Equations (7.2) are thus 

Dw = vect(P) 

vect(F) ~ ~ [ ~ll 

3Wl = 3 

2Wl + 2W2 - W3 = -1 

Wl +W2 +W3 = 1 

The first of the foregoing equations leads to 

Wl = 1 

whereas the second and the third lead to 

and hence, 

2W2 - W3 = -3 

W2 +W3 = 0 

W2 = -1, W3 = 1 
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Now, as a verification, w should be normal to the three columns of P as 
defined in eq.(7.15); in other words, w should lie in the nullspace of pT. 
But this is so, because 

thereby verifying that w lies, in fact, in the nullspace of pT. 

7.3 Computation of Angular Acceleration from 
Point-Acceleration Data 

The angular acceleration of a rigid body under general motion is determined 
in this section from knowledge of the position, velo city, and acceleration 
vectors of three noncollinear points of the body. The underlying procedure 
parallel that of Section 7.2. Indeed, recalling the notation introduced in 
that section, and letting vectors Pi, for i = 1,2,3, denote the acceleration 
of the given points, one can rewrite eq.(3.87) for each point in the form 

(7.18a) 

or 
(7.18b) 

where c was defined in eq.(7.1), and c is the acceleration of the centroid, 
i.e., 

1 3 

C == - LPi 
3 1 

Furthermore, matrix P is defined as 

Thus, eqs.(7.18b) can be written in compact form as 

(7.18c) 

(7.19) 

(7.20) 

from which one is interested in computing Ö, or correspondingly, w. To 
this end, eq.(7.20) is rewritten as 

Öp=w (7.21a) 

with matrix W defined as 

(7.21b) 
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The counterpart ofTheorem 7.2.1 is now derived from eqs.(7.18b). First, 
these equations are cast in the form 

.. .. n2( )' ( ) Pi - C - ~ ~ Pi - C = W X Pi - C , i = 1,2,3 

It is now apparent that if we dot-multiply the above equations by W, we 
obtain 

(7.22a) 

U pon assembling the three foregoing equations in one single vector equa
tion, we derive the counterpart of eq.(7.7b), namely, 

(7.22b) 

a result that is summarized below in theorem form: 

Theorem 7.3.1 The angular-accelemtion vector w lies in the nullspace of 
matrix W T , with W defined in eq.(7.21b). 

Just as we did in Section 7.2 when solving for w from eq.(7.9), we apply 
the result already invoked in connection with eq.(7.9), thereby deriving an 
alternative form of eq.(7.21a), namely, 

Dw = vect(P - n2p) 

where D is defined as in eq.(7.1O). Thus, 

w = D-1vect(P - n2p) 

(7.23) 

(7.24) 

with D-1 given as in eqs.(7.11) and (7.12). As in Section 7.2, then, given 
the position, velocity, and acceleration vectors of three noncollinear points 
of a rigid body, it is always possible to compute the associated angular 
acceleration. However, as discussed in that section, the data cannot be 
given arbitrarily, for they must comply with eq.(7.21a), or correspondingly, 
with eq.(7.22b). The former implies that the three columns of matrix W lie 
in the range of matrix 0; alternatively, eq.(7.22b) implies that 0 lies in the 
nullspace of W T . Again, prior to the determination of 0, it is impossible 
to verify this condition, for which reason an alternative approach is taken 
to verify compatibility. The obvious one is to differentiate both sides of 
eq.(7.15), which pro duces 

pTp + 2pTp + pTp = 0 (7.25) 

thereby deriving the compatibility conditions that the acceleration measure
ments should satisfy. 

Finally, upon differentiation of both sides of eq.(7.16) with respect to 
time, and while doing this, resorting to Lemma A.2 of Appendix A, we 
have 

tr(ppT + ppT) = 0 

which is the counterpart of eq.(7.16 ). 

(7.26) 
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z 

x y 

FIGURE 7.2. A rigid triangular plate undergoing a motion given by the velo city 
and acceleration of its vertices. 

Example 7.3.1 The three vertices of the equilateml tri angular plate of 
Fig. 7.2, which lies in the X-Y plane, are labeled PI, P2 , and P3 , their 
position vectors being PI, P2, and P3. Moreover, the velocities of the fore
going points are denoted by Pi, lor i = 1,2,3. The origin 01 the coordinate 
fmme X, Y, Z lies at the centroid C 01 the triangle, the velocities 01 the 
vertices, in this coordinate Imme, being given as 

. = 4 - V2 [~l PI 4 ' 
1 

. = 4-V3 [~l P2 4 ' 
1 

Likewise, PI, P2, and P3 denote the accelemtions of the three vertices of 
the plate, given below in the same coordinate fmme: 

.. __ ~ [8V3 + 3J6] 
P2 - 24 3V3 , 

o 

1 [ 6 + 4V3] 
P3 = 24 -12; 3V2 

With the foregoing information, 

(a) show that the three given velocities are compatible; 
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(b) compute the angular velocity 0/ the plate; 

(c) determine the set 0/ points 0/ the plate that undergo a velocity 0/ 
minimum magnitude; 

(d) show that the given accelerations are compatible; 

(e) compute the angular acceleration 0/ the plate. 

Solution: 

(a) Since the centroid of the triangle coincides with that of the three 
given points, we have c = O. Moreover, 

Thus, 

Furthermore, 

and hence, 

p = - -\1'3 1 [ 3 
6 0 

o 
2\1'3 
o 

We can readily show from the above results that 

pTp=O 

with 0 denoting the 3 x 3 zero matrix. Hence, matrix pTp is skew
symmetrie and the velocities are compatible 

(b) Next, we have 

D == -[tr(P)l- P] == - \1'3 1 1 [2\1'3 
2 12 0 

and 

[ -2\1'3 1 
vect(P) = 214 -\1'3 ~ 3V2 
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Hence, if the components of w in the given co ordinate frame are 
denoted by Wi, for i = 1,2,3, then we obtain 

2V3wl + 3W3 = -V3 
-v'3 + 3v'2 

V3Wl + 3W2 + V3W3 = 2 

(3 + 2V3)W3 = 0 

From the third equation, 
W3 = 0 

Substitution of the foregoing value into the first of the above equa
tions yields Wl = -1/2. Further , upon substitution of the values of Wl 

and W3 into the second of the above equations, we obtain W2 = v'2/2 
and hence, 

(c) Let p~ be the position vector of the point P6 on the instantaneous 
screw axis Iying closest to the origin. Now, in order to find P~, we 
can resort to eq.(3.72), using point C as a reference, i.e., with c and c 
pIaying the roles of a and ä. in that equation. Moreover, since c = 0, 
the expression for P~ reduces to 

I 1 n.' 
Po = IIwllzuC 

where from item (b), 

while 

Oc= 1 . 12-v'3[v'2] 
24 0 

and hence, 

I 12 - v'3 [v'2] Po = 1 
18 0 

As a verification, p~ should be perpendicular to the ISA, as it is, 
for the product wT p~ to vanish. Next, the vector representing the 
direction of the screw axis is obtained simpIy as 

thereby defining compietely the instant screw axis. 
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(d) The acceleration of the centroid of the three given points is given as 
follows: 

c = [- V6 _ y'3 0lT 
24' 24' 

Then, matrices P, pTp, pTp, and pTp are readily computed as 

P = - 12 - 3V2 + y'3 -2y'3 -12 + 3V2 + y'3 
1 [ -6 + 4y'3 + V6 -sy'3 - 2V6 6 + 4y'3 + V6] 

24 0 0 0 

pTp = _1_ 6 + 24y'3 - 6V6 -12 6 - 24y'3 + 6V6 [ 
-21 + 6V6 6 - 24y'3 - 6V6 15 + 24y'3 ] 

144 15 - 24y'3 6 + 24y'3 + 6V6 -21 - 6V6 

P p = - 6 - 24y'3 - 6V6 
.. T 1 [ -21+6V6 

144 15 + 24y'3 

6 + 24y'3 - 6V6 
-12 

6 - 24y'3 + 6V6 

15 - 24y'3 ] 
6 + 24y'3 + 6V6 

-21- 6V6 

pTp = _ -6 + 6V6 12 -6 - 6V6 
1 [21 - 6V6 -6 + 6V6 -15] 

144 -15 -6 - 6V6 21 + 6V6 

Now, it is a simple matter to verify that 

and hence, the given accelerations are compatible. 

(e) 0 is defined as the unique skew-symmetric matrix whose vector is w, 
the latter having been computed in item (b). Thus, 

Hence, 

P-OP=- 12 0 -12 
.. 2 1 [4y'3 -sy'3 4y'3] 

24 0 0 0 

The angular-acceleration vector is thus computed from 
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where D was computed in item (b), while 

and hence, letting 0.1i denote the ith component of w in the given 
coordinate frame, we obtain 

which yields 

112 (2v30.1l + 30.13 ) = ~ 

112 (v30.1l + 30.12 + v30.13) = y; 
~(3 2v3)0.1 = 3 + 2V3 
12 + 3 12 

thereby completing the solution. Note that w lies, in fact, in the 
nullspace of matrix (P - (l2p)T. 
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8 
Kinematics of Complex Robotic 
Mechanical Systems 

8.1 Introduction 

Current robotic mechanical systems, encountered not only in research lab
oratories but also in production or construction environments, include ro
botic mechanical systems with features that deserve a chapter apart. Gener
ically, we will call here complex robotic mechanical systems all such systems 
that do not fall in the category of those studied in Chapter 4. Thus, complex 
robotic mechanical systems are understood here as those systems of this 
kind that are either of the serial type but that do not allow a decoupling of 
the positioning and the orient at ion problems, or of type other than serial. 
Examples of the latter are parallel manipulators, dextrous hands, walking 
machines, and rolling robots. While redundant manipulators of the serial 
type fall within this category as well, we will leave these aside, for their 
redundancy resolution calls for a more specialized background than what 
we have either assumed or given here. 

A special feature of serial manipulators of the kind studied he re is that 
they can admit up to sixteen inverse kinematics solutions. Such manipula
tors are now in operation in industry, an example of which is the TELBOT 
System, shown in Fig. 8.1, which features all its six motors on its base, the 
motion and force transmission taking place via concentric tubes and bevel 
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FIGURE 8.1. The TELBOT System (Courtesy of Wälischmiller GmbH, Meers
burg, Germany.) 

gears. This special feature allows TELBOT to have unlimited angular dis
placements at its joints, no cables traveling through its structure and no 
deadload on its links by virtue of the motors (Wälischmiller and Li, 1996). 

8.2 The IKP of General Six-Revolute 
Manipulators 

As shown in Chapter 4, the IKP of six-revolute manipulators of the most 
general type leads to a system of six independent equations in six unknowns. 
This is a highly nonlinear algebraic system whose solution posed a chal
lenge to kinematicians for about two decades and that was not considered 
essentially solved until the late eighties. Below we give a short historical 
account of this problem. 
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Pieper (1968) reported what is probably the earliest attempt to for
mulate the inverse kinematic problem of six-axis serial manipulators in a 
univariate polynomial form. He showed that decoupled manipulators, stud
ied in Section 4.4, and a few others, allow a closed-form solution of their 
inverse kinematics. However, apart from the simple architectures identified 
by Pieper, and others that have been identified more recently (Mavroidis 
and Roth, 1992), a six-axis manipulator does not admit a closed-form so
lution. Attempts to derive the minimal characteristic polynomial for this 
manipulator were reported by Duffy and Derby (1979), Duffy and Crane 
(1980), Albala (1982), and Alizade, Duffy, and Hatiyev (1983), who de
rived a 32nd-degree polynomial, but suspected that this polynomial was 
not minimal, in the sense that the manipulator at hand might not be able 
to admit up to 32 postures for a given set of joint variables. Tsai and Mor
gan (1985) used a technique known as polynomial continuation (Morgan, 
1987) to solve numerically the nonlinear displacement equations, cast in the 
form of a system of quadratic equations. These researchers found that no 
more than 16 solutions were to be expected. Briefly stated, polynomial con
tinuation consists basically of two stages, namely, reducing first the given 
problem to a system of polynomial equations; in the second stage, a con
tinuous path, also known as a homotopy in mathematics, is defined with a 
real parameter t that can be regarded as time. The continuous path takes 
the system of equations from a given initial state to a final one. The initial 
state is so chosen that all solutions to the nonlinear system in this state are 
either apparent or much easier to find numerically than those of the origi
nally proposed system. The final state of the system is the actual system to 
be solved. The initial system is thus deformed continuously into the final 
state upon varying its set of parameters. At each continuation step, a set 
of initial guesses for each of the solutions already exists, for it is simply the 
solution to the previous continuation step. Moreover, finding the solutions 
at the current continuation step is done using a standard Newton method 
(Dahlquist and Björck, 1974). 

Primrose (1986) proved conclusively that the problem under discussion 
admits at most 16 solutions, while Lee and Liang (1988) showed that the 
same problem leads to a 16th-degree univariate polynomial. Using different 
elimination procedures, as described in Subsection 8.2.4 below, Li (1990) 
and Raghavan and Roth (1990, 1993) provided different approaches for the 
computation of the coefficients of the univariate polynomial. While the in
verse kinematics problem can be considered basically solved, research on 
finding all its solutions safelyand quickly still continues (Angeles, Hommel 
and Kovacs, 1993). Below we describe two approaches to solving this prob
lem: first, the semigraphical approach introduced in (Angeles and Etemadi 
Zanganeh, 1992) is described; then, we outline the methods of Raghavan 
and Roth (1990, 1993) and of Li (1990), aimed at reducing the kinematic 
relations 00 a single monovariate polynomial. 
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8.2.1 A Semigraphical Approach to the Solution of the IKP 

In this subsection, we introduce a semigraphical solution to the general IKP. 
Unlike well-established procedures aiming at the reduction of all involved 
equations to one single univariate polynomial equation, we will proceed 
to a reduction of those equations to a system of two nonlinear bivariate 
equations. Each of these equations defines a contour in the plane of the 
two unknowns, the intersection of the two contours thus yielding all real 
solutions. Our aim will be to avoid the introduction of spurious solutions, 
which would increase the degree of the resulting equations. On the other 
hand, from the numerical viewpoint, it is convenient to avoid increasing the 
conditioning of the problem (Dahlquist and Björck, 1974; Golub and Van 
Loan, 1989), which calls for a judicious elimination procedure. However, it 
will become apparent that two contours, while producing all real solutions 
of the IKP under study, yield spurious solutions as weIl. These can be 
readily eliminated by introducing a third contour, i.e., a discriminating 
contour that will allow us to tell the actual from the spurious solutions. 

Before introducing the solution procedure, we will give some background. 
Moreover, the notation we will use throughout is taken from Tsai and 
Morgan (1985) and Raghavan and Roth (1990, 1993). 

Background 

We start by recalling the definition of vector Xi of eq.(4.11), which is 
reproduced below for quick reference: 

. = [COS()i] X, _ . () 
sm i 

Likewise, we recall the definitions of Subsection 4.4.1 pertaining to bilin
ear forms, with similar definitions for biquadratic, bicubic, trilinear, and 
multilinear forms. Now we have 

Lemma 8.2.1 Let matrix A be skew-symmetric and B be defined as the 
similarity tmns/ormation 0/ A given below: 

(8.1) 

where Qi was defined in eq.(4.1d) and A is assumed to be independent 0/ 
()i. Then, B is linear in Xi· 

Proof: This result foHows from relation (2.138). Indeed, as the reader can 
readily verify, B is skew-symmetric as weH, and the product Bv, for any 3-
dimensional vector v, can be expressed in terms of b, defined as the vector 
of B. That is, 

Bv = b x v 
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But if adenotes the vector of A, then a and b, by virtue of eq.(8.1) and 
the results of Section 2.6, obey the relation 

b= Qia 

Hence, 
Bv = Qi(a x v) 

thereby showing that the resulting product is linear in Xi, q.e.d. 
Moreover, let 

(J. 
Ti == tan(""':) 

2 
(8.2a) 

which allows us to write the identities below, as suggested by Li (1990): 

(8.2b) 

Next, we write eqs.(4.9a & b) in the form 

Q3Q4Q5 = QrQfQQf (8.3a) 

Q3(b3 + Q4b4 + Q4Q5b 5) = QrQf(p - Qb6) - (b2 + Qrbl X8.3b) 

Two more definitions are introduced below: 

0' == Q06 

P == p - Qb6 = P - QQf ~ 

(8.4a) 

(8.4b) 

Thus, 06 is e6 in F 7-coordinates, and hence, 0' represents e6 in Fl-coor
dinates. Likewise, p is the vector directed from 0 1 to 0 6 , as depicted in 
Fig. 8.2, in Fa-coordinates. Furthermore, in the above definitions, vectors 
0' and p are independent of 8 because so are Q, 06, p, and b6. 

Note that the matrix equation (8.3a) represents three vector equations, 
one for each column of the two sides of that equation. If we now separate the 
third of those vector equations from the others, introduce definition (8.4a) 
in the equation thus resulting, and rewrite eq.(8.3b) using definition (8.4b), 
we derive six scalar equations free of (Ja, namely, 

Q3Q4U 5 = QrQf 0' 

Q3(b3 + Q4b4 + Q4Q5b 5) = QrQf p - b2 - Qrb1 

{8.5a) 

(8.5b) 

Moreover, the six foregoing scalar equations are multilinear in Xi, for i = 
1, ... ,5. In fact, their left-hand sides are trilinear in x3, x4, and xs, their 
right-hand sides heing bilinear in Xl and X2. In the elimination procedure, 
we will try to keep this multilinearity inasmueh as it is possible. For brevity, 
we introduee further definitions below: 

f == Q3(b3 + Q4b4 + Q4Q5b5) 

g == QrQf p - (b2 + Qrbl ) 

h == Q3Q4U5 

i == QrQf 0' 

(8.6a) 

(8.6b) 

(8.6e) 

(8.6d) 
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FIGURE 8.2. Partitioning of the manipulator loop into two subloops. 

The geometrie meaning of the foregoing definitions is illustrated in Fig. 8.2. 
In that figure, fand g represent the same vector directed from 0 3 to 0 6 ; the 
former denotes this vector in the form a3+a4 +a5, the latter as p- (al +a2). 
Moreover, both fand gare expressed in F 3-coordinates. Likewise, hand i 
represent vector e6 in F 3-coordinates. 

The two vector equations of interest, i.e., those providing six scalar equa
tions free of ()6, are thus obtained upon equating the right-hand side of 
eq.(8.6a) with that of eq.(8.6b), and the right-hand side of eq.(8.6c) with 
that of eq.(8.6d). 

Note that the foregoing equations are not independent, for the two sides 
of the second of those equations are subjected to the same quadmtic con
straint, i.e., 

h . h = 1, i· i = 1 

Hence, out of those six scalar equations, only five are independent, but 
these suffice to determine the five unknowns contained therein. Raghavan 
and Roth (1990, 1993), as weH as Li, Woernle and Hiller (1991), proposed 
independent procedures to eliminate four of the five unknowns, thereby 
deriving a 16th-degree polynomial equation in the tangent of half the fifth 
unknown angle. We will outline in Subsection 8.2.4 these two procedures. 
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In this subsection, however, we follow a slightly different approach that 
will lead to a semigraphical solution to the problem at hand. We do this 
for several reasons, namely, (i) high-degree polynomials are pro ne to nu
merical ill-conditioning (Dahlquist and Björck, 1974); (ii) in the presence 
of a root yielding an angle of 7r, the polynomial degenerates into one of a 
lower degree, while, in the vicinity of 7r, one of the roots is extremely large, 
thereby producing numerical instabilities; (iii) a graphicalor semigraphi
cal procedure is more appealing to engineers than a purely numerical ap
proach; (iv) by resorting to a semigraphical approach, we make use of very 
powerful tools in terms of software and hardware, that are available nowa
days; and (v) the graphical solution provides information on the numerical 
conditionin!jto be explained later-of the solutions, while purely numer
ical methods do not. Thus, our procedure aims at deriving not one single 
16th-degree univariate polynomial, but rat her two bivariate equations in 
the sines and eosines of two of the unknown angles. 

Our goal is then to eliminate three of the five unknowns of eqs.(8.7a 
& b). In order to do this, we will proceed, as Raghavan and Roth (1990, 
1993) did, to derive 14 equations out of the four vectors f, g, h, and i given 
above. On the other hand, Li (1990)1 derived 20 equations comprising the 
same 14 used by Raghavan and Roth, plus six supplementary equations, 
all of which are multi linear in {Xi}f. The basic 14 equations consist of 12 
scalar equations derived from four 3-dimensional vector equations and two 
additional scalar equations. The first three of these vector equations are 
listed below: 

f=g 

h = i 
fxh=gxi 

(8.7a) 

(8.7b) 

(8.7c) 

The fourth vector equation of interest is derived by first equating the 
rejlection2 ofvector h onto a plane normal to fwith its counterpart, namely, 
the reftection of vector i onto a plane normal to g. We now define two unit 
vectors J1, and v, namely, 

- g 
v=@ 

Further, two pure reftections, as introduced in Section 2.2, are defined as 

IN. B. Lee and Li of the references in this chapter are one and the same 
person, namely, Dr.-Ing. Hongyou Lee (a.k.a. Dr.-Ing. Hongyou Li). 

2Surprisingly, neither Li nor Raghavan and Roth realized the geometrie 
significance of this fourth equation, first proposed by Lee. 
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Upon equating RJ.'h with Rlli, the desired equation is obtained in the form 

h - 2(p . h)p = i - 2(v . i)v 

or 
f·h . g·i 

h-21fflf2f=1-211ilf2g 

But, since f = g, we also have !!f!! = !!g!!, the above equation thus leading 
to 

(8.7d) 

Note that each side of the above equation is, in fact, an elongated, or corre
spondingly, a contracted reflection of a unit vector. Finally, the two scalar 
equations are derived upon equating the inner products f . fand f . h with 
their counterparts g . g and g . i, respectively, i.e., 

f·f=g·g 

f·h=g·i 

(8.7e) 

(8.7f) 

In connection with the foregoing 14 scalar equations, eqs.(8.7a-f), we have 
a few facts that are proven below: 

Fact 8.2.1 The inner products f· fand f . h are bilinear in {Xi H, while 
their counterparts g . g and g . i are linear in Xl. 

Proof: 

f· f == !!Q3(b3 + Q4b4 + Q4Q5b 5)!!2 

== IIb3 + Q4b4 + Q4Q5b 511 2 
5 

== L IIbi !!2 + 2bIQ4(b4 + Q5b 5) + 2bIQ5b 5 
3 

whose rightmost-hand side is clearly free of X3 and is bilinear in {Xi H. 
Similarly, 

f· h == (b3 + Q4b4 + Q4Q5b5fQIQ3Q4U5 

== bIQ4U5 + bI U5 + bgQg U5 

whose rightmost-hand side is clearly bilinear in X4 and X5, except for the 
last term, which contains two terms that are linear in X5, and hence, can 
be suspected to be quadratic. However, Q5b5 is, in fact, a5, while U5 is the 
last column of Q5, the suspicious term thus reducing to a constant, namely, 
b5 COSQ5. Similar proofs hold for g. g and g. i. Moreover, 

Fact 8.2.2 Vector f x h is trilinear in {Xi H, while its counterpart, g x i, 
is bilinear in {Xi H. 
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Proo/: If we want the cross product of two vectors in frame A but have 
these vectors in frame B, then we can proceed in two ways: either (i) 
trans form each of the two vectors into A-coordinates and perform the cross 
product of the two transformed vectors; or (ii) perform the product of the 
two vectors in B-coordinates and trans form the product vector into A
coordinates. Obviously, the two products will be the same, which allows us 
to write 

f x h == Q3 [b3 x (Q4U5) + (Q4b4) x (Q4U5) + (Q4Q5b5) x (Q4U5)] 

== Q3{b3 x (Q4U5) + Q4(b4 x U5) + Q4 [(Q5b5) x U5)]} 

whose rightmost-hand side is apparently trilinear in {Xi H, except for the 
term in brackets, which looks quadratic in X5. A quick calculation, however, 
reveals that this term is, in fact, linear in X5. Indeed, from the definitions 
given in eqs.(4.3d & d) and (4.12) we have 

which is obviously linear in X5. The prooffor the counterpart product, g x i, 
par allels the foregoing proof. 

Fact 8.2.3 Vector (f· f)h - 2(f· h)f is trilinear in {Xi H, its counterpart, 
(g . g)i - 2(g . i)g, being bilinear in {Xi H. 
Prao/: First, we write the aforementioned (elongated or contracted) reflec
tion of vector h in the form 

(f· f)h - 2(f . h)f == Q3V 

where 

5 

V == (2:: Ilb i 11 2 )Q4U5 - 2[(UgQ4b3)b3 + (ugb4)b3 + (ugb4)Q4b4 
3 

+(ugQ5b5)b3 + (ugQ5b5)Q4b4 + (UgQ5b5)Q4Q5b5] + 2w 

with all terms on the right-hand side, except for w, which will be defined 
presently, clearly bilinear in X4 and X5. Vector w is defined as 

each of the foregoing brackets being expanded below: 

[ ]1 == [(bfQ4b4)Q4U5 - (ugQfb3)Q4b 4] 

== Q4(U5bfQf - b4ugQf)b3 

== Q4(U5bf - b4uf)Qfb3 



www.manaraa.com

298 8. Kinematics of Complex Robotic Mechanical Systems 

which thus reduces to a product including the factor QiAQ;, with A being 
the term in parentheses in the rightmost-hand side ofthe last equation. This 
is obviously a skew-symmetric matrix, and Lemma 8.2.1 applies, i.e., the 
rightmost-hand side of the last equation is linear in X4' This term is, hence, 
bilinear in X4 and Xs. Furthermore, 

[ 12 == [(brQsbs)Q4Us - (uIb4)Q4Qsbs] 

== Q4 [(bIQIb4)us - (uIb4)Qsb s] 

== Q4(usbIQI - Q sb sunb4 

which is clearly linear in X4, but it is not obvious that it is also linear in 
Xs. To show that the latter linearity also holds, we can proceed in two 
ways. First, note that the term in parentheses is the skew-symmetric ma
trix usag - asuf, whose vector, as x Us, was already proven to be lin
ear in Xs. Since the vector of a skew-symmetric matrix fully defines that 
matrix-see Section 2.3-the linearity of the foregoing term in Xs follows 
immediately. Alternatively, we can expand the aforementioned difference, 
thereby deriving 

asJ.Ls 
o 

asAsss + bsJ.Lscs 

-asASCS + bSJ.LSSS] 
-asAsss - bsJ.Lscs 

o 
which is clearly linear in Xs. Moreover, its vector can be readily identified 
as as x Us, as calculated above. Finally, 

[ b == [(bfQ4Qsbs)Q4US - (UIQrb3)Q4Qsb s] 

== Q4(usbIQI - Qsb sunQrb3 

== Q4(usaI - asunQrb3 

this bracket thus reducing to a product including the factor QiAQ;, with 
A skew-symmetric. Hence, the foregoing expression is linear in X4, ac
cording to Lemma 8.2.1. Moreover, the matrix in parentheses was already 
proven to be linear in Xs, thereby completing the proof for vector (f· f)h-
2(f· h)f. The proof for vector (g. g)i - 2(g· i)g paralleIs the foregoing proof 
and hence, need not be included here. Finally, we have one more result that 
will be used below: 

Fact 8.2.4 If a scalar, vector, or matrix equation is linear in Xi, then upon 
substitution OfCi and Si by their equivalentforms in terms OfTi == tan(Od2), 
the foregoing equation becomes quadratic in Ti. 

Proof: We shall show that this result holds for a scalar equation, with 
the extension to vector and matrix equations following directly. The scalar 
equation under discussion takes on the general form 
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where the coefficients A, B, and C do not contain Oi. Upon performing 
the trigonometrie substitutions of Ci and Si in terms of Ti == tan(Od2) and 
multiplying both sides of that equation by 1 + Tl, we obtain 

whieh is clearly quadratie in Ti. The same proof follows immediately for 
vector and matrix equations. Moreover, in general, if a scalar, vector, or ma
trix equation is of degree k in Xi, upon introducing the same trigonometrie 
substitution, the said equatioh becomes ofdegree 2k in Ti. 

Elimination Procedure 

So far, we have derived four 3-dimensional vector equations--eqs.(8.7a
d)-and two scalar equations, eqs.(8.7e & f), which thus amount to a total 
of 14 scalar equations. Moreover, from the form of vectors fand h, it is 
apparent that the left-hand sides of those four vector equations all have 
the form Q3V, while their right-hand sides take on the form Qfw + k, 
where v is a 3-dimensional vector independent of 03 ; w is, in turn, a 3-
dimensional vector independent of O2 ; and k is a constant 3-dimensional 
vector. Moreover, if we recall that the third row of Qi is independent of Oi, 
it is apparent that the third component of the right-hand si des of those four 
vector equations are independent of 03 . Furthermore, the left-hand sides of 
eqs.(8.7e & f) are also independent of 03 , while their right-hand sides are, 
in turn, independent of O2 . We thus have produced two sets of equations: 
(i) the first set consists of the first two scalar equations of the four vector 
equations (8.7a-d), and is thus composed of eight scalar equations; we shall 
term this set Group 1; and (ii) the set of third scalar equations of the four 
vector equations (8.7a-d), along with the last two scalar equations (8.7e & 
f). Correspondingly, the second set will be termed Group 2. 

The eight equations of Group 1 are now cast in the form 

(8.8a) 

where A is an 8 x 6 matrix whose entries are all functions of the data only 
and do not depend on the unknowns, while b is an 8-dimensional vector 
whose components are trilinear in {xd~, and X12 is the 6-dimensional vector 
defined below: 

(8.8b) 

Moreover, the six equations in Group 2 are written in the form 

(8.9) 

in which C is a 6 x 2 matrix whose entries are, like those of A, functions 
of the data only, and do not depend on the unknowns, while d is a 6-
dimensional vector that is tri linear in {xd~. We now pick out any two of the 
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six scalar equations in eq.(8.9) and solve for Xl from them. To this end, we 
partition matrix C into the 2 x 2 block Cu and the 4 x 2 block CL. Likewise, 
vector d is partitioned correspondingly into an upper 2-dimensional part 
du and a lower 4-dimensional part d L , namely, 

(8.10) 

In the above partitioning, Cu is chosen so that it is nonsingular, which 
may require a reordering of the equations. Under this condition, then, we 
have two subsystems of equations in Xl, i.e., 

CUXI = du 

CLXI = d L 

(8.l1a) 

(8.l1b) 

Upon solving for Xl from eq.(8.lla) and substituting the expression thus 
resulting into eq.(8.llb), we obtain fOUf equations free of Xl, namely, 

(8.12) 

where 04 is the 4-dimensional zero vector. Note that the foregoing equa
tions are linear in d, and hence, trilinear in {xiH. We can then express 
these equations as a system of fOUf equations that are linear in X3, or in 
homogeneous form, as 

(8.13a) 

where D I is a 4 x 3 matrix that is bilinear in X4 and X5, while Y3 is defined 
as 

(8.13b) 

Furthermore, we pick up any six equations of Group 1 and solve for Xl2 

from them. To this end, we partition A into an upper 6 x 6 block Au and a 
lower 2 x 6 block AL, with a corresponding partitioning of b into an upper 
6-dimensional part b u and a lower 2-dimensional part b L, namely, 

_ [Au] _ [bu] 
A= AL ' b= b L 

(8.14) 

where block Au is chosen so that it is nonsingular, which again may require 
a renumbering of the equations. We have now two subsystems of equation 
in X12, i.e., 

A U X l2 = b u 
ALXl2 = b L 

(8.15a) 

(8.15b) 
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Upon solving for X12 from eq.(8.15a) and substituting the expression thus 
obtained into eq.(8.15b), we obtain a system of two equations free of (h 
and (h, as shown below: 

ALAc?bu - b L = O2 

with 02 denoting the 2-dimensional zero vector. Note that this equation 
is linear in b, and hence, trilinear in {xd~. This system can thus be cast 
in the form of two linear equations in X3, or correspondingly, in linear 
homogeneous form in Y3, namely, 

(8.16) 

with D 2 being a 2 x 3 matrix whose entries are bilinear in X4 and X5' 

Further, we assemble eqs.(8.13a) and (8.16) in the form of six linear homo
geneous equations in Y3, namely, 

(8.17) 

where D is a 6 x 3 matrix whose entries are bilinear in X4 and X5. In the next 
step, we partition D into two 3 x 3 blocks, Du and D L, thereby obtaining 
two systems of three equations each, that are linear homogeneous in Y3, 
namely, 

(8.18) 

with 03 defined as the 3-dimensional zero vector. It is apparent that both 
Du and D L are bilinear in X4 and X5. Now, for the two systems of equations 
appearing in eq.(8.18) to yield acceptable solutions Y3, the two associated 
matrices, Du and D L must be singular, for Y3 is apparently nonzero from 
definition (8.13b), and hence, we must have 

(8.19) 

However, nothing so far guarantees that the nontrivial solution of the first 
of the two foregoing equations is identical to the solution of the second 
equation. In order to guarantee this, we impose the condition that each 
solution Y3 must satisfy 

or 
(Du - DdY3 = 03 

and hence, we must impose a third condition, namely, 

(8.20) 

Now, the set {fi(l14,(h)}~ defines three contours {Cdr The points where 
all three contours intersect define the solutions of the problem at hand. In
tersections of only two contours are thus disregarded, for these are spurious 
solutions. 
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Once all common intersections of the three foregoing contours have been 
determined, we have already two ofthe unknowns, 04 and 05 , the remaining 
four unknowns being calculated uniquely as described presently. First, (h 
can be computed from eq.(8.17), which can be rewritten in the form 

HX3=T (8.21a) 

where the 6 x 2 matrix Hand the 6-dimensional vector T are both bilin
ear in X4 and X5 and hence, known. Although any two of the six equa
tions (8.21a) suffice, in principle, to determine X3, we should not forget 
that these computations will most likely be performed with finite preci
sion, and hence, roundoff-error amplification is bound to occur. In order 
to keep roundoff errors as low as possible, we recommend to use all fore
going six equations and calculate X3 as the least-square approximation of 
the overdetermined system (8.21a). This approximation will be, in fact, 
the solution of the given system because all six equations are compatible. 
Moreover, this approximation can be expressed symbolically in the form 

(8.21b) 

In practice, the foregoing least-square approximation is computed using 
an orthogonalization procedure (Golub and Van Loan, 1989), the explicit 
or the numerical inversion of the product HTH being advised against be
cause of its frequent ill-conditioning. Appendix B outlines a robust numer
ical computation of the least-square approximation of an overdetermined 
system of equations using orthogonalization procedures. What is relevant 
to our discussion is that eq.(8.21b) determines 03 uniquely for given val
ues of 04 and 05 . Likewise, 01 can be readily found from eq.(8.9) using the 
least-square approximation of the overdetermined system of eq.(8.9) that 
contains six equations and two unknowns. Again, this approximation is, in 
fact, the solution of the said system, and can be expressed symbolically as 

(8.22) 

With 01 ,03 ,04 , and 05 available, vector X2 can be determined from eq.(8.8a) 
by rewriting it in the form 

(8.23a) 

where the 8 x 2 matrix Ä is linear in Xl. Thus, X2 can be determined 
uniquely from eq.(8.23a) as its least-square approximation, namely, 

(8.23b) 

Finally, 06 is readily determined from eq.(4.9a). In fact, the first of the 
three vector equations represented by this matrix equation yields 

(8.24a) 
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where q denotes the first column of Q, while according to eq.(4.12), P6 
denotes the first column of matrix Q6, i.e., 

(8.24b) 

Thus, eq.(8.24a) can be readily solved for P6, thereby obtaining 

P6 = Q;QrQfQrQf q (8.25) 

which thus provides a unique value of B6 for every set of values of { Bk H, 
thus completing the solution of the IKP under study. 

8.2.2 Numerical Conditioning of the Solutions 

In this subsection, we recall the concept of condition number of a square 
matrix (Golub and Van Loan, 1989), as introduced in Section 4.9. In this 
subsection, however, we stress the relevance of the concept in connection 
with the numerical reliability of the computed solutions of the general IKP. 

The concept of condition number of a square matrix is of the utmost im
portance because it measures the roundoff-error amplification upon solving 
a system of linear equations having that matrix as coefficient. The con
dition number of a matrix was defined in Section 4.9 as the ratio of the 
largest to the smallest singular values of the matrix. While this is but one 
of the many possible ways in which the condition number of a matrix can 
be defined (Dahlquist and Björck, 1974), it is what best suits our purposes. 

In the context of the foregoing contour-intersection method, we can intu
itively argue that the accuracy in the computation of a solution is dictated 
by the angle at which the two contours giving a solution intersect. Thus, the 
numerically most reliable solutions are those determined by contours inter
secting at right angles, the least reliable being those obtained by tangent 
contours. We shall formalize this observation in the discussion below. 

Here, we distinguish between the condition number of a matrix and the 
conditioning of a solution of a nonlinear system of equations. We define 
the latter as the condition number of the Jacobian matrix of the system, 
evaluated at that particular solution. 

For concreteness, let 

!t(Xl,X2) = 0 

h(XI,X2) = 0 

be a system of two nonlinear equations in the two unknowns Xl and X2. 
Moreover, the Jacobian matrix of this system is defined as 

(8.26) 
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where \lfk denotes the gradient of function fk(Xl, X2), defined as 

(8.27) 

It is to be noted that multiplying each of the two given equations by a 
scalar other than zero does not affect its solutions, each Jacobian column 
being, then, correspondingly multiplied by the same scaling factor. To ease 
matters, we will assurne henceforth that each of the above equations has 
been properly scaled so as to render its gradient a unit vector in the plane of 
the two unknowns. In order to calculate the condition number of F, which 
determines the conditioning of the solutions, we calculate first its singular 
values as the positive square roots of the eigenvalues of FFT . This matrix 
is given as 

\l h . \l h] == [1 cos 'Y ] 
1 cos'Y 1 

where 'Y is the angle at which the contours intersect. The eigenvalues Al 
and A2 of the product FFT are thus given by 

Al = 1 - cos'Y, A2 = 1 + cos'Y (8.28) 

and hence, the condition number '" of F can be readily computed as 

(8.29) 

which means that for the best possible solutions from the numerical condi
tioning viewpoint, the two contours cross each other at right angles, whereas 
at singular configurations, they are tangent to each other. The reader may 
have experienced that, when solving a system of two linear equations in 
two unknowns with the aid of drafting instruments, the solution becomes 
less reliable as the two lines representing those equations become closer and 
closer to parallel. 

8.2.3 Examples 

Example 8.2.1 In this first example, alt inverse kinematie solutions of 
the Fanue Are Mate manipulator are found for the pose of the end-effeetor 
given below: 

[ 
130 1 p= 850 

1540 

in whieh p is given in mm and the DH parameters of the manipulator are 
given in Table 4.2. 
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TABLE 8.1. Inverse Kinematics Solutions of the Fanue Are Mate Manipulator 

Sol'n 
No. (h 

1 & 2 90° 
3 90° 
4 75.157° 

85 (rad) 

I 
f 

·1 

f 
f 

·2 

·3 

·3 

82 

90° 
16.010° 
15.325° 

/ 
/ 

/ 

83 

0° 
153.403° 
150.851° 

') 

" ( 

" "-
"-

"-

/ 

/" 

\ 
I 
I 
I 
I 

f 
/ 

- 2 -1 

84 85 86 

180° -180° 0° 
180° 100.588° 0° 

15.266° -103.353° 176.393° 

84 (rad) 

FIGURE 8.3. Contours Cl, C2 , and C3 for the Fanue Are Mate manipulator. 

Solution: The solutions are obtained from the interseetions of the three 
contours Cl, C2 , and C3 , as shown in Fig. 8.3. 

Four interseetion points ean be deteeted in this figure, which are num
bered 1, 2, 3, and 4. Moreover, at points 1 and 2 the three eontours are 
tangent to eaeh other. Tangency indieates the existenee of a multiple root 
at that point, and hence, a singularity, as diseussed in Subseetion 4.5.2 in 
conneetion with deeoupled manipulators. The numerical values of the joint 
angles of the four solutions are given in Table 8.1. 

Example 8.2.2 In this example, we discuss the IKP of DIESTRO, the 
isotropie six-axis orthogonal manipulator shown in Fig. 4.31 (Williams, 
Angeles, and Bulca, 1993). For a meaning of kinematic isotropy, we refer 
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84 (rad) 

FIGURE 8.4. Contours Cl, C2 , and C3 for the DIESTRO Manipulator. 

the reader to Section 4.9. This manipulator has the DH parameters given 
in Table 4.1. 

The isotropie pose 01 the end-effector is defined by the orthogonal matrix 
Q and the position vector p displayed below: 

Q ~ [~ ~' ~ll p ~ h~o 1 
with p given in mm. 

Solution: At the given pose, the manipulator admits two isolated solutions, 
those labeled 1 and 2, as weH as an infinite number of singular solutions 
(SS), as shown in Fig. 8.4. 

In this figure, the overlapping parts of the three eontours Cl, C2 , and C3 

represent a manifold of singular solutions, whieh means that this manipula
tor admits a set of self-motions, Le., joint motions leaving the end-effeetor 
stationary. These self-motions ean be readily explained if one realizes that 
when the end-effector is located at the isotropie pose and the manipulator 
is postured at joint-variable values determined by any point on the overlap
ping part SS, the six links deseribe a Bricard mechanism (Brieard, 1927), 
whieh is exceptional in that its degree of freedom cannot be determined 
from the Chebyshev-Grübler-Kutzbach formula (Angeles, 1982). Here, the 
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TABLE 8.2. Inverse Kinematics Solutions of the DIESTRO Manipulator 

Solution No. (h fh 83 84 85 86 

1 0° 90° -90° 900 -90° 180° 
2 1800 -90° 90° -900 90° 0° 

TABLE 8.3. DH Parameters of Lee's Manipulator 

i ai (m) bi (m) Qi 8i 

1 0.12 0 -57° 81 

2 1.76 0.89 350 82 
3 0.07 0.25 95° 83 

4 0.88 -0.43 79° 84 

5 0.39 0.5 _75° 85 

6 0.93 -1.34 -90° 86 

one-dof motion of the meehanism oeeurs beeause the axes determine two 
intersecting triads. Moreover, the two eontours Cl and C2 interseet at right 
angles at solution 1, which eorresponds to the isotropie post ure of the 
robot. The numerieal values of the joint variables for the isolated solutions 
are given in Table 8.2 

Example 8.2.3 Here we include an example 01 a manipulator admitting 
sixteen real inverse kinematics solutions. This manipulator was proposed 
by Li (1990), its Denavit-Hartenberg parameters appearing in Table 8.3. 

Solution: The foregoing proeedure was applied to this manipulator for an 
end-effeetor pose given as 

[
-0.357279 -0.850000 0.387106] 

Q = 0.915644 -0.237000 0.324694 , 
-0.184246 0.4 70458 0.862973 

where p is given in meters. 

[ 
0.798811 ] 

P = -0.000331 
1.200658 

The eontours for this manipulator at the given EE pose are shown 
in Fig. 8.5, the numerieal values of the sixteen solutions being given in 
Table 8.4. 

8.2.4 The Univariate Polynomial Approach to the 
Solution of the IKP 

Alternatively, a univariate 16th-degree polynomial equation ean be de
rived for six-revolute manipulators of general geometry. This polynomial 
is termed the "eharacteristie polynomial" of the problem at hand. Here 
we derive this polynomial using two systematie proeedures, namely, those 
proposed by Raghavan and Roth (1990, 1993) and by Li (1990). 
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FIGURE 8.5. Contours Cl, C2 , and C3 for Lee's manipulator. 

Raghavan and Roth '8 Procedure 

In the discussion below, we outline Raghavan and Roth's procedure to de
rive the characteristic polynomial sought. To this end, we use their notation 
to a large extent. In fact, Raghavan and Roth's procedure to derive a set of 
six linear homogeneous equations of the form of eq.(8.17) from eqs.(8.7a
f) is different from the one we outlined above. Their procedure is based 
on simplifications that rely on the factoring of the rotation matrices Qi 
into two reflections, as introduced in eqs.( 4.2a). However, for purposes of 
the forthcoming derivations, this difference is immaterial, and we can start 
from eq.(8.17), written in the form 

(8.30a) 

where ~ is a 6 x 9 matrix whose entries are linear in X3, while X45 is defined 
as 

Now, the usual trigonometrie identities relating Si and Ci with Ti == tan(Od2), 
for i = 4,5, are substituted into eq.(8.30a). Upon multiplying the two sides 
of the equation thus resulting by (1 + T';)(1 + Tl), Raghavan and Roth 
obtain 

(8.30b) 
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TABLE 8.4. Joint Angles of Lee's Manipulator 

Sol'n 
No. (h (h 93 

1 174.083° -163.302° -164.791° 
2 -159.859° -159.324° -111.347° 
3 164.800° -154.290° -85.341° 
4 -148.749° -179.740° -78.505° 
5 -16.480° -10.747° -58.894° 
6 -46.014° -19.256° -46.988° 
7 -22.260° -22.431° -32.024° 
8 -53.176° 26.165° 9.103° 
9 -173.928° 150.697° 47.811 ° 
10 -41.684° -29.130° 52.360° 
11 -137.195° -156.920° 68.306° 
12 -139.059° 128.112° 96.052° 
13 -22.696° 29.214° 98.631° 
14 -83.094° 57.022° 130.976° 
15 1.227° -7.353° 142.697° 
16 177.538° -148.178° 159.429° 

Sol'n 
No. 94 95 96 

1 -107.818° -155.738° 141.281 ° 
2 120.250° 176.596° 21.654° 
3 4.779° -127.809° -101.359° 
4 158.091 ° 148.266° 55.719° 
5 -4.164° 164.079° 5.677° 
6 -120.218° -145.864° -114.768° 
7 -32.411° -172.616° -17.155° 
8 145.868° 136.351° 127.978° 
9 -21.000° -40.438° -92.284° 
10 6.559° -129.124° 25.091° 
11 135.685° -51.347° 147.446° 
12 25.440° -7.345° -119.837° 
13 -176.071 ° 11.573° 170.303° 
14 67.570° -10.827° -110.981 ° 
15 -123.878° -29.214° 149.208° 
16 -148.647° -129.278° 110.984° 

where :E' is a 6 x 9 matrix that is linear in X3, while x~5 is defined as 

7,2 
5 

If the same trigonometrie identities, for i = 3, are now substituted into 
eq.(8.30b) and then the first four scalar equations of this set are multiplied 
by (1 + Tl) to clear denominators, the equation thus resulting then takes 
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the form 
:E"x~5 = 0 (8.30c) 

In the above equations, :E" is a 6 x 9 matrix whose first four rows are 
quadratic in T3 while its last two rows are clearly rational functions of 
T3. However, as reported by Raghavan and Roth, the determinant of any 
6 x 6 submatrix of :E" is, in fact, an 8th-degree polynomial in T3 and 
not a rational function of the same. Moreover, in order to eliminate T4 

and T5, they resort to dialytic elimination (Salmon, 1964). This is done by 
first multiplying the system appearing in eq.(8.30c) by T4; then the new 
system of equations thus obtained is adjoined to the original system of 
eq.(8.30c), thereby deriving a system of 12 linear homogeneous equations 
in X45, namely, 

(8.30d) 

where 012 is the 12-dimensional zero vector, while the 12-dimensional vector 
X45 is defined as 

Furthermore, the 12 x 12 matrix S is defined as 

its 6 x 12 blocks G and K taking on the forms 

G == [:E" 0 63 ], K == [063 :E" ] 

with 0 63 defined as the 6 x 3 zero matrix. 
Now, in order for eq.(8.30d) to admit a nontrivial solution, the determi

nant of its coefficient matrix must vanish, i.e., 

det(S) = 0 (8.31) 

The determinant of S is the characteristic equation sought. This determi
nant turns out to be a 16th-degree polynomial in T3. Moreover, the roots 
of this polynomial give the values of T3 corresponding to the 16 solutions 
of the IKP. It should be noted that using the same procedure, one can also 
derive this polynomial in terms of either T4 or TS if the associated vector in 
eq.(8.30d) is written as X35 or X34, respectively. Consequently, the entries 
of matrix :E would be linear in either X4 or X5. 

Lee '8 Procedure 

At the outset, the factoring of Qi given in eq.(4.1b) and the identities first 
used by Li (1990), namely, eqs.(8.2b), are recalled. Additionally, Lee defines 
a matrix Ti as 

1 

~l 
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Hence, 

Furthermore, we note that the left-hand si des of the four vector equations 
(8.7a-d) are ofthe form Q3V, where v is a 3-dimensional vector independent 
of (h. Upon multiplication of the above-mentioned equations from the left 
by matrix T 3, Lee obtains a new set of equations, namely, 

U 3f = T 3g 

U 3r = T 3 i 

ulr x r) = T 3 (g x i) 

U 3 [(f. f)r - 2(f· h)fJ = T 3 [(g. g)i - 2(g· i)gl 

where fand rare defined as 

f == A3(b3 + Q4b4 + Q4Q5b 5) 

r == A3(Q4u5) 

with Ai defined, in turn, in eq.(4.1b). 

(8.32a) 

(8.32b) 

(8.32c) 

(8.32d) 

(8.33) 

(8.34) 

Because of the form of matrices T 3 and U 3, the third of each of the 
four vector equations (8.32a-d) is identical to its counterpart appearing in 
eqs.(8.7a-d). That is, if we denote by either Vi or (V)i the ith component 
of any 3-dimensional vector v, the unchanged equations are 

73 = 93 

1'3 = i 3 

(f x rh = (g x ih 
(f· f)1'3 - 2(f· h)73 = (g. g)i3 - 2(g· i)93 

(8.35a) 

(8.35b) 

(8.35c) 

(8.35d) 

all of which are free of (h. Furthermore, six additional equations linear in 
73 will be derived by multiplying both sides of eqs.(8.35a-d) and of (8.7e 
& f) by 73, i.e., 

7373 = 7393 

731'3 = 73i3 

73(f x rh = 73(g x ih 

73[(f· f)1'3 - 2(f· h)73l = 73[(g· g)i3 - 2(g· i)93l 

73(f· f) = 73(g . g) 

73(f· h) = 73(g . i) 

(8.36a) 

(8.36b) 

(8.36c) 

(8.36d) 

(8.36e) 

(8.36f) 

We have now 20 scalar equations that are linear in 73, namely, the 12 
eqs.(8.32a-d), plus the six equations (8.36a-f) and the two scalar equations 
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(8.7 e & f). Moreover, the left-hand sides of the foregoing 20 equations are 
trilinear in T3, X4, and X5, while their right-hand sides are trilinear in T3, 

Xl, and X2. These 20 equations can thus be written in the form 

Ax=ß (8.37a) 

where the 20 x 16 matrix A is a function of the data only, while the 20-
dimensional vector ß is trilinear in T3, Xl, and X2, the 16-dimensional vector 
X being defined, in turn, as 

x~h~~ ~~% ~~~ ~~% ~~ ~~~~ ~% 
C4C5 C485 84C5 8485 C4 84 C5 85]T (8.37b) 

Next, matrix A and vector ß are partitioned as 

(8.37c) 

where Au is a nonsingular 16 x 16 matrix, AL is a 4 x 16 matrix, vector 
ßu is 16-dimensional, and vector ß L is 4-dimensional. Moreover, the two 
foregoing matrices are functions of the data only. Thus, we can solve for X 
from the first sixteen equations of eq.(8.37a) in the form 

X = AUIßU 

Upon substituting the foregoing value of X in the remaining four equations 
of eq.(8.37a), we derive an equation free of x, namely, 

(8.38) 

In eq.(8.38) the two matrices involved are functions of the data only, 
while the two vectors are trilinear in T3, xl, and X2. These equations are 
now cast in the form 

(8.39a) 

where all coefficients Ai, ... , Fi are linear in Xl. Next, we substitute C2 and 
82 in the foregoing equations by their equivalents in terms of T2 ~ tan(02/2), 
thereby obtaining, for i = 1, 2, 3, 4, 

with the definitions 

Aii ~ Ai + Ci 

Cii ~ Ci - Ai 

Fii ~ Fi - Di 

(8.39b) 

(8.39c) 

(8.39d) 

(8.3ge) 

(8.39f) 
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Further, both sides of all the four equations (8.39b) are multiplied by T2, 

which yields 

(8.39g) 

We have now eight equations that are linear homogeneous in the 8-
dimensional nonzero vector z defined as 

'03 
2 (8.39h) 

and hence, the foregoing 8-dimensional system of equations takes on the 
form 

Mz=O (8.40) 

where the 8 x 8 matrix M is simply 

0 Cll 0 2B l Fll All 2El Dl 

0 C22 0 2B2 F22 A22 2E2 D2 

0 C33 0 2B3 F33 A33 2E3 D3 

M= 
0 C44 0 2B4 F44 A44 2E4 D4 

Cll 2B l Fll All 2El 0 Dl 0 
C22 2B2 F22 A22 2E2 0 D2 0 
C33 2B3 F33 A33 2E3 0 D3 0 
C44 2B4 F44 A44 2E4 0 D4 0 

Now, since z is necessarily nonzero, eq.(8.40) should admit nontrivial 
solutions, and hence, matrix M should be singular, which leads to the 
condition below: 

det(M) = 0 (8.41) 

Thus, considering that all entries of M are linear in Xl, det(M) is octic 
in Xl, and hence, eq.(8.41) is equally octic in Xl. By virtue of Fact 4, then, 
eq.(8.41) is of 16th degree in Tl, i.e., it takes on the form 

(8.42) 

which is the characteristic equation sought, whose roots provide up to 16 
real values of 01 for the IKP at hand. Once (h is available, the remaining 
angles are computed as indicated below: 

Equations (8.40) are first rearranged in nonhomogeneous form, i.e., as 

Nz'=n (8.43) 
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with the 8 X 7 matrix N and the 7- and 8-dimensional vectors z' and n 
defined as 

0 Cu 0 2B1 Fu Au 2E1 

0 C22 0 2B2 F22 A22 2E2 

0 C33 0 2B3 F33 A33 2E3 

N::= 
0 C44 0 2B4 F44 A44 2E4 

Cu 2B1 Fu Au 2E1 0 D1 

C22 2B2 F22 A22 2E2 0 D2 

C33 2B3 F33 A33 2E3 0 D3 

C44 2B4 F44 A44 2E4 0 D4 

and 

7i7 3 
D1 

7?73 
D2 

~3 D3 
2 D4 z' ::= 72 7 3 n::= 

7? 
0 
0 

73 
0 

72 
0 

Now, eq.(8.43) represents an overdetermined linear algebraic system of 
eight equations but only seven unknowns. While we can solve, in prin
ciple, for the seven unknowns from any subset of seven equations of the 
given eight, we prefer not to do so, but rather use all information available, 
i.e., use all eight equations. This is recommended because of the unavoid
able arbitrariness in the choice of the equation to be deleted from the sys
tem (8.43). This arbitrariness would lead unnecessarily to ill-conditioning, 
which can be readily avoided if the whole system of eight equations is 
solved for the 7-dimensional unknown. This is readily done using a least
square approach and an orthogonalization procedure, as outlined before. 
Symbolically, the solution thus obtained can be expressed, as usual, in the 
form 

z' = (NTN)-lNT n 

We have emphasized here that the above expression is meant only to indi
cate the solution to the above underdetermined system of algebraic equa
tions because, numerically, the least-square approximation at hand is not 
computed explicitly as displayed above. That formula was used verbat im 
in Subsection 3.4.1 to compute the position vector of the point of the in
stant screw axis lying closest to the origin. Although the formula produced 
excellent results in that case, the reader should not be misled to think that 
this will be always the case. Indeed, the reason why this formula worked 
in that subsection is that the matrix A to which it was applied happened 
to have all its columns of the same Euclidean norm and mutually orthog
onal. In practice, this is seldom the case, and matrix N above may be far 
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from having the properties of A in Subsection 3.4.1. Moreover, if the Polar
Decomposition Theorem, introduced in Section 4.9, is invoked and applied 
to rectangular matrices, something that is possible but on which we have 
not elaborated here, it may become apparent that the singular values of 
NTN are exactly the squares of the singular values of N. What this means 
is that the condition number of the former, based on the definition adopted 
here, is exactly the square of the condition number of the latter. As a conse
quence, even if N is moderately ill-conditioned, the product NTN will turn 
out to be catastrophically ill-conditioned. The reader is advised to look at 
Appendix B for an outline on the robust computation of the least-square 
approximation of an overdetermined system of linear equations. 

With z' known, both 72 and 73, and hence, O2 and 03 , are known uniquely. 
Further, with 01, O2 , and 03 known, the right-hand side of eq.(8.37a), ß, 
is known. Since the coefficient matrix A of that equation is independent 
of the joint angles, it is known, and that equation can be solved for vec
tor x uniquely. Once x is known, the two angles 04 and 05 are uniquely 
determined, with 06 the sole remaining unknown, which can be readily 
determined, also uniquely, as discussed in Subsection 8.2.1. 

8.3 Kinematics of Parallel Manipulators 

Contrary to serial manipulators, parallel manipulators are composed of 
kinematic chains with closed subchains. A very general manipulator of this 
kind of machine is shown in Fig. 8.6, in which one can distinguish two 
platforms, one fixed to the ground, B, and one capable of moving arbitrarily 
within its workspace, M. The moving platform is connected to the fixed 
platform through six legs, each being regarded as aserial manipulator, the 
leg thus constituting a six-axis serial manipulator whose base is Band 
whose end-effector is M. The whole leg is composed of six links coupled 
through six revolutes. 

The manipulator shown in Fig. 8.6 is, in fact, too general, and of little use 
as such. A photograph of a simpler and more practical manipulator of this 
kind, which is used as a fiight simulator, is shown in Fig. 1.5, its kinematic 
structure being depicted in Fig. 8.7a. In this figure, the fixed platform B is 
a regular hexagon, while the moving platform M is an equilateral triangle, 
as depicted in Fig. 8.7b. Moreover, Bis connected to M by five revolutes 
and one prismatic pair. Three of the revolutes constitute a spherical joint, 
similar to the wrists studied in Section 4.4, while two more constitute a 
universal joint, i.e., the concatenation of two revolutes with intersecting 
axes. Of the foregoing six joints, only one, the prismatic pair, is actuated. 

It is to be noted that although each leg of the manipulator of Fig. 8.7a 
has a spherical joint at only one end and a universal joint at the other 
end, we represent each leg in that figure with a spherical joint at each 
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FIGURE 8.6. A general six-dof parallel manipulator. 

(b) 

FIGURE 8.7. A six-dof flight simulator: (a) general layout; (b) geometry of its 
two platforms. 
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end. Kinematically, the leg depicted in Fig. 8.7a is equivalent to the actual 
one, the only difference being that the former appears to have a redundant 
joint. We use the model of Fig. 8.7a only to make the drawing simpler. A 
more accurate display of the leg architecture of this manipulator appears 
in Fig. 8.8. 

The kinematics and statics of parallel manipulators at large being beyond 
the scope of this book, we will limit the discussion to parallel manipulators 
of the simplest type. 

With regard to the manipulators under study, we can also distinguish be
tween the inverse and the direct kinematics problems in exactly the same 
way as these problems were defined for serial manipulators. The inverse 
kinematics of the general manipulator of Fig. 8.6 is identical to that of the 
general serial manipulator studied in Section 8.2. In fact, each leg can be 
studied separately for this purpose, the problem thus becoming the same 
as that of the aforementioned section. For the particular architecture of 
the manipulator of Fig. 8.7a, in which the actuated joint variables are dis
placements measured along the leg axes, the inverse kinematics simplifies 
substantially and allows for a simple closed-form solution. However, the 
direct kinematics of the same manipulator is as challenging as that of the 
general serial manipulator of Section 8.2. With regard to the direct kine
matics of manipulators of the type depicted in Fig. 8.7a, Charentus and 
Renaud (1989) and Nanua, Waldron, and Murthy (1990) showed indepen
dently that like the inverse kinematics of general six-axis serial manipu
lators, the direct kinematics of this manipulator reduces to a 16th-degree 
polynomial. Note, however, that the direct kinematics of a manipulator 
similar to that of Fig. 8.7a, but with arbitrary locations of the attachment 
points of each leg to the moving and fixed platforms, termed the general 
platform manipulator, has been the subject of intensive research (Meriet, 
1991). A breakthrough in the solution of the direct kinematics of plat
form manipulators of the general type was reported by Raghavan (1993), 
who resorted to polynomial continuation, a technique already mentioned 
in Section 8.2, for computing up to 40 poses of M for given leg lengths 
of a parallel manipulator with legs of the type depicted in Fig. 8.8, but 
with attachment points at both M and ß with an arbitrary layout. What 
Raghavan did not derive is the characteristic 40th-degree polynomial of the 
general platform manipulator. Independently, Wampler (1996) and Husty 
(1996) devised procedures to derive this polynomial, although Wampler did 
not pursue the monovariate polynomial approach and preferred to cast the 
problem in a form suitable for its solution by means of polynomial continu
ation. Husty did derive the 40th-degree polynomial for several examples. In 
the process, he showed that this polynomial is the underlying characteristic 
polynomial for all manipulators of the platform type, which simplifies to 
a lower-degree polynomial for simpler architectures. As a matter of fact, 
Lee and Roth (1993) solved the direct kinematics of pi at form manipula
tors for which the attachment points at the base and the moving platforms 
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FIGURE 8.8. A layout of a leg of the manipulator of Fig. 8.7. 

are located at the vertices of planar, similar hexagons. These researchers 
showed that the problem here reduces to a cascade of quadratic and linear 
equations. In the particular case in which both polygons are regular, how
ever, the manipulator degenerates into a movable structure, upon fixing the 
leg lengths, and hence, the solution set becomes a continuum. Lazard and 
Merlet (1994), in turn, showed that the platform manipulator originally 
proposed by Stewart (1965), and known as the Stewart platform, has a 
12th-degree characteristic polynomial. Interestingly, these mechanical sys
tems were first introduced by Gough (1956-1957) for testing tires; Stewart 
(1965) suggested their use as flight simulators, an application that is now 
well established. 

Below we analyze the inverse kinematics of one leg of the manipulator of 
Fig. 8.7a, as depicted in Fig. 8.8. The Denavit-Hartenberg parameters of 
the leg shown in this figure are given in Table 8.5. It is apparent that the 
leg under study is a decoupled manipulator. Its inverse kinematics can be 
derived by properly modifying the scheme presented in Section 4.4, for we 
now have a prismatic joint, which is, in fact, the only active joint of this 
manipulator. Moreover, by virtue of the underlying design, the active joint 
variable, b3 , can take on only positive values. 
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TABLE 8.5. DH Parameters of the Leg of Fig. 8.8 

i ai bi (ti 

1 0 0 90° 
2 0 0 90° 
3 0 b3 0° 
4 0 b4 (const) 90° 
5 0 0 90° 
6 0 b6 (const) 0° 

In view of the DH parameters of this manipulator, eq.( 4.16) re duces to 

(8.44) 

where c denotes the position vector of the center C of the spherical wrist. 
U pon equating the squares of the Euclidean norms of both sides of the 
foregoing equation, we obtain 

(8.45) 

where by virtue of the DH parameters of Table 8.5, 

Now, since both b3 and b4 are positive by construction, eq.(8.45) readily 
leads to the desired inverse kinematics solution, namely, 

(8.46) 

a result that could have been derived by inspection from Fig. 8.8. 
Note that the remaining five joint variables of the leg under study are 

not needed for purposes of inverse kinematics, and hence, their caIculation 
could be skipped. However, in studying the differential kinematics of these 
manipulators, these variables will be needed, and so it is convenient to solve 
for them now. This is straightforward, as shown below: Upon expansion of 
eq.(8.44) , we derive three scalar equations in two unknowns, (h and (h, 
namely, 

(b3 + b4 )S2 = XC C1 + YC S 1 

-(b3 + b4 )C2 = Zc 

o = XCS1 - YCC1 

(8.47a) 

(8.47b) 

(8.47c) 

in which Ci and Si stand for cos ei and sin ei , respectively, while b3 occur
ring in the above equations is available in eq.(8.46). From eq.(8.47c), e1 is 
derived as 

(8.48a) 
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which yields a unique value of (}l rather than the two lying 7f radi ans apart, 
for the two coordinates Xc and Yc determine the quadrant in which (h lies. 
Once (}l is known, (}2 is derived uniquely from the remaining two equations 
through its cosine and sine functions, i.e., 

Zc 
C2 = - b3 + b4 ' 

(8.48b) 

With the first three joint variables of this leg known, the remaining ones, 
Le., those of the "wrist," are calculated as described in Subsection 4.4.2. 
Therefore, the inverse kinematics of each leg admits two solutions, one for 
the first three variables and two for the last three. Moreover, since the only 
actuated joint is one of the first three, which of the two wrist solutions 
is chosen does not affect the value of b3 , and hence, each manipulator leg 
admits only one inverse kinematics solution. 

While the inverse kinematics of this leg is quite straightforward, its direct 
kinematics is not. Below we give an outline of the solution procedure for the 
manipulator under study that follows the procedure proposed by Nanua, 
Waldron, and Murthy (1990). 

In Fig. 8.7a, consider the triangles AiSiBi , for i = 1,2,3, where the 
subscript i stands for the ith pair of legs. When the lengths of the six legs 
are fixed and plate M is removed, triangle AiSiBi can only rotate about 
the axis AiBi . Therefore, we can replace the pair of legs of lengths qia and 
qib by a single leg of length li, connected to the base plate 13 by arevolute 
joint with its axis along AiBi. The resulting simplified structure, as shown 
in Fig. 8.9, is kinematically equivalent to the original structure in Fig. 8.7a. 

Now we introduce the coordinate frame F i , with origin at the attachment 
point Gi of the ith leg with the base plate 13, according to the convention 
below: 
For i = 1,2,3, 

Gi is set at the center of the revolute joint; 

Yi is chosen such that Zi is perpendicular to the plane of the hexagonal 
base and points upwards. 

Next, we locate the three vertices SI, S2, and S3 of the triangular plate 
with position vectors stemming from the center G of the hexagon. Fur
thermore, we need to determine li and Gi. Referring to Figs. 8.9 and 8.10, 
and letting a; and b i denote the position vectors of points Ai and Bi, 
respectively, we have 
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FIGURE 8.9. Equivalent simplified mechanism. 

for i = 1,2,3, and hence, Ui is the unit vector directed from Ai to Bi. 
Moreover, the position of the origin Oi is given by vector 0i, as indicated 
below: 

Oi = ai + riUi, for i = 1,2,3. (8.49) 

Furthermore, let Si be the position vector of Si in frame Fi (Oi, Xi, Yi, Zi). 
Then 

Si = [ -li ~OS4>i 1 ' 
li sin 4>i 

for i = 1,2,3 (8.50) 

Now a frame Fa (0, X, Y, Z) is defined with origin at 0 and axes X and 
Y in the plane of the base hexagon, and related to Xi and Yi as depicted 
in Fig. 8.11. When expressed in frame Fa, Si takes on the form 

[sdo = [odo + [RdoSi' for i = 1,2,3 (8.51 ) 
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FIGURE 8.10. Replacing each pair of legs with a single leg. 

y 

O-------------IC=- x 

FIGURE 8.11. Relation between frames Fa and F i . 

where [Ri 10 is the matrix that rotates frame :Fo to frame :Fi , expressed in 
:Fo, and is given as 

- sinai 
cos ai 

o 
fori=1,2,3 (8.52) 
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Referring to Fig. 8.11, 

cos ai = Ui . i = Uix 

sin ai = Ui . j = Uiy 

After substitution of eqs.(8.52)-(8.54) into eq.(8.51), we obtain 

for i = 1,2,3 

where 0i is given by eq.(8.49). 

(8.53) 

(8.54) 

(8.55) 

Since the distances between the three vertices of the triangular plate are 
fixed, the position vectors 81,82, and 83 must satisfy the constraints below: 

1182 - 8111 2 = ai 
1183 - 8211 2 = a~ 
1181 - 8311 2 = a5 

After expansion, equations (8.56)-(8.58) take on the forms: 

D1cCPl + D2cCP2 + D3cCPICCP2 + D4sCPlSCP2 + D5 = 0 

E 1cCP2 + E2cCP3 + E3cCP2CCP3 + E4sCP2SCP3 + E5 = 0 

F1cCPl + F2cCP3 + F3cCPICCP3 + F4sCPlSCP3 + F5 = 0 

(8.56) 

(8.57) 

(8.58) 

(8.59a) 

(8.59b) 

(8.59c) 

where c(·) and s(·) stand for cos(·) and sin(·), respectively, while {Di , Ei, Fdf 
are functions of the data only and have the forms shown below: 

D 1 = 2l2 (02 - 01)TEu2 

D2 = -2h(02 - olfEul 

D3 = -2h12uI Ul 

D4 = -21112 

D 5 = 1102112 + 11 0 111 2 - 20[02 + li + l~ - ai 

EI = 2h(03 - 02fEu3 

E2 = -212 (03 - 02fEu2 

E3 = -21213uI U2 

E4 = -212h 
E5 = 1103112 + 1102112 - 20I02 + l~ + l~ - a~ 

F1 = 2h(01 - 03fEul 

F2 = -2h(01 - 03fEu3 
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F3 = -2hl3Uf Ul 
F4 = -2h l3 

F5 = 1103112 + 1101112 - 20f 01 + l~ + l~ - a~ 

In the above relations the 2 x 2 matrix E is defined as in eq.(4.102), and 
the frame in which the vectors are expressed is immaterial, as long as all 
veetors appearing in the same sealar produet are expressed in the same 
frame. Sinee expressions for these veetors in :Fo have already been derived, 
it is just simpler to perform those eomputations in this frame. 

Our next step is to reduee the foregoing system of three equations in 
three unknowns to two equations in two unknowns, and henee, obtain two 
eontours in the plane of two of the three unknowns, the desired solutions 
being determined as the interseetions ofthe two eontours. Sinee eq.(8.59a) is 
already free of CP3, all we have to do is eliminate CP3 from equations (8.59b) 
and (8.5ge). To do this, we resort to the usual trigonometrie identities 
relating CCP3 and SCP3 with tan(cp3/2), in eqs.(8.59b) and (8.5ge). After we 
have cleared the denominators by multiplying the two foregoing equations 
by (1 + Tl), the equations thus resulting take on the forms 

klT~+k2T3+k3=O 
ml T~ + m2T3 + m3 = 0 

(8.60a) 

(8.60b) 

where k1 , k2, and k3 are linear eombinations of S<P2, CCP2, and 1. Likewise, 
ml, m2, and m3 are linear combinations of scp!, CCPl, and 1, namely, 

k1 = EI CCP2 - E2 - E3cCP2 + E5 

k2 = 2E4 s<p2 

k3 = EI CCP2 + E2 + E3ccp2 + E5 

ml = F1cCPl - F2 - F3cCPl + F5 

m2 = 2F4 sCPl 

m3 = F1 ccpl + F2 + F3 ccpl + F5 

Next, we eliminate T3 from the above equations dialytically, as we did in 
Subsection 4.5.3 to find the workspace of a three-axis serial manipulator. 
We proceed now by multiplying each of the above equations by T3 to obtain 
two more equations, namely, 

(8.60c) 

(8.60d) 

Further, we write eqs.(8.60a)-(8.60d) in homogeneous form, i.e., as 

(8.61a) 
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with the 4 x 4 matrix ~ and the 4-dimensional vector 7"3 defined as 

(8.61b) 

Equation (8.61a) constitutes a linear homogeneous system. Moreover, in 
view of the form of vector 7"3, we are interested only in nontrivial solutions, 
which exist only if det(~) vanishes. We thus have the condition 

det(~) = 0 (8.61c) 

Equations (8.59a) and (8.61c) form a system of two equations in two un
knowns, ePl and eP2. These two equations can be further reduced to a single 
16th-degree polynomial equation (Nanua, Waldron and Murthy, 1990), as 
discussed later on. 

In the spirit of the contour method introduced earlier, we plot these 
two equations as two contours in the ePl-eP2 plane and determine the de
sired solutions at points where the two contours intersect. Onee a pair of 
(ePl, eP2) values is found, eP3 can be uniquely determined from eqs.(8.59b & 
c). Indeed, these equations can be arranged in the form: 

From the above equation, both CeP3 and SeP3 can be found uniquely; with 
the foregoing unique values, eP3 is determined uniquely as weH. 

Knowing the angles ePI, eP2, and eP3 aHows us to determine the position 
veetors of the three vertices of the mobile plate, 81, 82, and 83, whose 
expressions are given by eq.(8.55). Since three points define aplane, the 
pose of the end-effeetor is uniquely determined by the positions of its three 
vertiees. We illustrate the foregoing proeedure with a numerieal example 
below: 

Example 8.3.1 (A Contour-Interseetion Approach) Nanua, Waldron, and 
Murthy (1990) studied the direct kinematics 0/ a manipulator 0/ the kind 
under analysis. This is a plat/orm manipulator whose base plate has six 
vertices with coordinates expressed with respect tothe fixed re/erence frame 
Fo as given beIow, with all data given in meters: 

Al = (-2.9, -0.9), 

A2 = ( 2.5, 4.1), 

A3 = ( 1.3, -2.3), 

BI = (-1.2, 3.0) 

B2 = ( 3.2, 1.0) 

B3 = (-1.2, -3.7) 

The dimensions 0/ the movable triangular plate are, in turn, 

al = 2.0, a2 = 2.0, 
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Determine all possible poses of the moving plate for the dimensions of the 
six legs given below: 

q1a = 5.0, 

q2a = 5.5, 

q3a = 5.7, 

q1b = 4.5 

q2b = 5.0 

q3b = 5.5 

Solution: After substitution of the given numerical values, eqs.(8.59a) and 
(8.61e) beeome, with Ci and Si standing for eos <Pi and sin <Pi, respectively, 

61.848 - 36.9561c1 - 47.2376c2 + 33.603c1C2 - 41.6822s1S2 = 0 

-28.5721 + 48.6506c1 - 20.7097cI + 68.7942c2 - 100.811C1C2 

+35.9634cIC2 - 41.4096c~ + 50.8539c1C~ - 15.613cIc~ - 52.9789sI 

+67.6522c2SI -13.2765c~sI + 74.1623s1S2 - 25.6617C1S1S2 

-67.953C2S1S2 + 33.9241c1C2S1S2 - 13.202s~ 

-3.75189c1S~ + 6.13542cIs~ = 0 

The foregoing equations determine eontours Cl and C2 in the <P1-<P2 plane, 
whieh are plot ted in Figs. 8.12. Four real solutions are found by superim
posing Cl and C2 , as shown in the above figure. The numerieal values of the 
solutions, listed in Table 8.6, agree with the published results. Solutions 
1 and 2 represent two poses of the triangular plate over the base, while 
solutions 3 and 4 are just the reflections of solutions 1 and 2 with respeet 
to the plane of the base plate. Henee, the geometrie symmetry gives rise to 
an algebraic symmetry of the solutions. 

Example 8.3.2 (The Monovariate Polynomial Approach) Reduce the two 
equations found in Example 8.3.1, eqs.(8.59a) and (8. 61 c), to a single 
monovariate polynomial equation. 

Solution: We first substitute the trigonometrie identities relating C<Pi and 
S<Pi with Ti == tan(<pd2), for i = 1, 2, into eqs.(8.59a) and (8.61e). Upon 

TABLE 8.6. Solutions for Nanua, Waldron, and Murthy's Example 

No. <P1 (rad) <P2 (rad) <P3 (rad) 
1 0.8335 0.5399 0.8528 
2 1.5344 0.5107 0.2712 
3 -0.8335 -0.5399 -0.8528 
4 -1.5344 -0.5107 -0.2712 
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1>2 (rad) 
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1>1 (rad) 

FIGURE 8.12. Contours Cl and C2 for Nanua, Waldron, and Murthy's example. 

clearing the denominators by multiplying those equations by (1 +Tf)( 1 +Ti), 
we obtain two polynomial equations in Tl, namely, 

where 

and 

GlTt + G 2Tf + G3Tl + G4Tl + Gs = 0 

HIT; + H2TI + H3 = 0 

GI = KlTi + K 2Ti + K 3 

G 2 = K4T~ + KST2 

G3 = K 6Ti + K 7Ti + K s 

G 4 = K9T~ + KlOT2 

Gs = k ll Ti + K 12Ti + K 13 

H l =LlTi+L2 
H 2 = L 3 T2 

H 3 = L 4Ti + L s 

(8.62) 

(8.63) 

In the above relations, {KdP and {Ldf are all functions of the data. We 
now eliminate Tl from eqs.(8.62) and (8.63), following Bezout's method, 
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as given in (Salmon, 1964). To do this, we multiply eq.(8.62) by H l and 
eq.(8.63) by GI Tf and subtraet the two equations thus resulting, which 
leads to a eubic equation in Tl, namely, 

(G2Hl - Gl H2)Tf + (G3Hl - Gl H3)Tf + G4HlTl + G5 Hl = 0 (8.64a) 

Likewise, if eq.(8.62) is multiplied by H l Tl + H2 and eq.(8.63) by GI Tf + 
G2Tf and the equations thus resulting are subtraeted from eaeh other, one 
more eubie equation in Tl is obtained, namely, 

(Gl H3 - G3HdTf + (G4Hl + G3H2 - G2H3)Tf 

(8.64b) 

Moreover, if we multiply eq.(8.63) by Tl, a third eubic equation in Tl ean 
be derived, i.e., 

HlTf + H2Tf + H3Tl = 0 (8.64e) 

Now, eqs.(8.63) and (8.64a-e) eonstitute a homogeneous linear system of 
four equations in the first four powers of Tl, which ean be east in the form 

HTI =0 

where Tl == [ Tl Tf Tl l]T and 

[
G2Hl - GlH2 G3Hl - Gl H3 

H = G3Hl - Gl H3 G3H2 - G2H3 + G4Hl 
- H l H 2 

o H l 

G4H l 

G4 H2 +G5 H l 

H3 

H 2 

(8.65) 

In order for eq.(8.65) to admit a nontrivial solution, the determinant of its 
eoefficient matrix mnst vanish, i.e., 

det(H) = 0 (8.66) 

Now, we expand det(H) in the form 

det(H) = HlÄl + H 2 Ä 2 + H 3 Ä 3 

where Ä i , far i = 1, 2, 3, is the eofactor of entry H i in the last row of 
matrix H above, Le., 

G3 H l - G l H 3 

G3H2 - G2H3 + G4Hl 
H 2 
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Given the definitions of {Gdf and {HkH, it is apparent that GI, G3 , and 
G5 are quartic, while G2 and G4 are cubic polynomials in 72. Likewise, 
HI and H3 are quadratic, while H2 is linear in 72 as weIl. As a result, ß I 

and ß3 are 14th-degree polynomials, and ß2 is a 13th-degree polynomial 
in 72. Hence, det(H) is a 16th-degree polynomial in 72. This equation, in 
general, admits up to 16 different solutions. Moreover, the roots of the 
polynomial are either in the form of complex conjugate pairs or real pairs. 
In the latter case, each pair represents two symmetrical positions of the 
mobile platform with respect to the base, Le., for each solution found above 
the base, another, mirror-imaged, solution exists below it. This symmetry 
exists, in general, as long as the six base attachment points are coplanar. 

Other parallel manipulators are the planar and spherical counterparts of 
that studied above, and sketched in Figs. 8.13 and 8.14. The direct kine
matics of the manipulator of Fig. 8.13 was found to admit up to six real 
solutions (Gosselin, Sefrioui and Richard, 1992), while the spherical ma
nipulator of Fig. 8.14 has been found to admit up to eight direct kinematic 
solutions (Gosselin, Sefrioui and Richard, 1994a, b). A comprehensive ac
count of the simulation and design of three-dof spherical parallel manipu
lators, which includes workspace analysis as weIl, is included in (Gosselin, 
Perreault, and Vaillancourt, 1995). 

8.3.1 Velocity and Acceleration Analyses of Parallel 
M anipulatoTs 

Now we proceed to the velocity analysis of the manipulator of Fig. 8.7a. 
The inverse velo city analysis of this manipulator consists in determining 
the six rates of the active joints, {bk H, given the twist of the moving 
platform, t. The velocity analysis of a typical leg leads to a relation of the 
form of eq.(4.54), namely, 

(8.67a) 

where JJ is the Jacobian of the Jth leg, 8J is the 6-dimensional joint
rate vector of the same leg, and tJ is the twist of the moving platform 
M, with its operation point defined as the point C J of concurrency of the 
three revolutes composing the spherical joint of attachment of the leg to 
the moving platform M, and shown in Fig. 8.8 as C, subscript J indicating 
that point C of that figure is different for different legs. We thus have 

ci ci] ;8.67b) 

(8.67c) 

where the leg geometry has been taken into account. 
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Furthermore, from Fig. 8.8, it is apparent that 

(8.68) 

with r J defined as the vector directed from C J to the operation point P of 
the moving platform. 

Upon multiplication of both sides of the velo city relation of this leg, 
eq.(8.67a), by k}' from the left, with k J suitably defined, we obtain a rela
tion free of all unactuated joint rates. Indeed, a suitable definition of k J is 
shown below: 

and hence, on the one hand, 

where the subscript J reminds us that b3 is different for each leg. In order 
to ease the notation, and since we have a single variable b3 per leg, we 
define henceforth 

(8.69a) 

and hence, the above relation between tJ and the actuated joint rate of the 
Jth leg takes the form 

On the other hand, 

Likewise, we define 
(e3)J == eJ 

the foregoing relation thus yielding 

kTt T· 
J J == eJcJ 

(8.69b) 

(8.70a) 

(8.70b) 

Note that vectors eJ and r J define uniquely the line along the two attach
ment points of the Jth leg. Henceforth, this line will be termed the axis of 
the Jth leg. 

Upon equating the right-hand sides of eqs.(8.69b) and (8.70b), the de
si red expression for the actuated joint rate is derived, namely, 

(8.71a) 

That is, the Jth joint rate is nothing but the projection onto the Jth leg 
axis of the velocity of point C J. Furthermore, upon substituting eq. (8.68) in 
eq. (8. 71a) above, we obtain the relations between the actuated joint rates 
and the twist of the moving platform, namely, 

J = I, II, ... , VI (8.71b) 
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for all six actuated joint rates. Upon assembling all six leg-equations of 
eq.(8.71b), we obtain the desired relation between the vector of actuated 
joint rates and the twist of the moving platform, namely, 

b=Kt (8.72a) 

with the 6-dimensional vectors band t defined as the vector of joint vari
ables and the twist of the platform at the operation point, respectively. 
Moreover, the 6 x 6 matrix K is the Jacobian of the manipulator at hand. 
These quantities are displayed below: 

[

(eI x rI)T 

K == (eIl x: rIl)T 

(eVI x rVI)T 

(8.72b) 

From the above display, it is apparent that each row of K is the transpose 
of the Plücker array of the corresponding leg axis, although in axis coordi
nates, as opposed to the Jacobian matrix J of serial manipulators, whose 
columns are the Plücker coordinates of the corresponding joint axis in ray 
coordinates. Moreover, in these coordinates, the moment of the leg axis is 
taken with respect to the operation point P of M. One more difference 
between the velocity analysis of serial and parallel manipulators is the role 
played by the actuator joint rates in the underlying forward and direct 
kinematics. In the case of parallel manipulators, this role is changed, for 
now we have that the actuator joint rates are given by explicit formulas in 
terms of the twist of the moving platform, along with the manipulator ar
chitecture and configuration. Finding the platform twist requires inverting 
matrix K. Moreover, the significance of singularities also changes: When K 
becomes singular, some instantaneous motions of the platform are possible 
even if all actuated joints are kept locked. That is, a singularity of K is 
to be interpreted now as the inability of the manipulator to withstand a 
certain static wrench. An extensive analysis of the singularities of parallel 
manipulators using line geometry in a form that is known as Grassmann 
geometry was reported by Merlet (1989). 

Now, the acceleration analysis of the same leg is straightforward. Indeed, 
upon differentiation of both sides of eq.(8.72a) with respect to time, one 
obtains 

(8.73a) 

where K takes the form 

(8.73b) 
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FIGURE 8.13. A planar parallel manipulator. 

FIGURE 8.14. A spherical parallel manipulator. 
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and UJ is defined as 
(8.73c) 

Therefore, 
(8.73d) 

Now, since vectors rJ are fixed to the moving platform, their time-deriva
tives are simply given by 

(8.73e) 

On the other hand, vector eJ is directed along the leg axis, and so, its 
time-derivative is given by 

with WJ defined as the angular velo city of the third link of the leg, Le., 

WJ = (Ölel + Ö2e2)J 

the subscript J of the above parentheses reminding us that this angular ve
locity differs from leg to leg. Clearly, we need expressions for the rates of the 
first two joints of each leg. Below we derive the corresponding expressions. 
In order to simplify the notation, we start by defining 

(8.73f) 

Now we write the second vector equation of eq.(8.67a) using the foregoing 
definitions, which yields 

(Öl)JfJ x (bJ + b4 )eJ + (Ö2)JgJ x (bJ + b4 )eJ + bJeJ = cJ 

where b4 is the same for aHlegs, since aH have identical architectures. Now 
we ean eliminate (112 )J from the foregoing equation by dot-multiplying both 
of its sides by gJ, thereby producing 

(8dJgJ x f J . (bJ + b4 )eJ + +g}(eJe})cJ = gTcJ 

where an obvious exchange of the cross and the dot in the above equation 
has taken place, and expression (8.71a) for bJ has been recalled. Now it is 
a simple matter to solve for (8dJ from the above equation, which yields 

(0·) _ g} (1 - eJe})cJ 
1 J --

ßJ 

with ßJ defined as 
(8.74) 

Moreover, we can obtain the above expression for (8 l h in terms of the 
platform twist by recalling eq.(8.68), which is reproduced below in a more 
suitable form for quick reference: 
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where t is the twist of the platform, the 3 x 6 matrix C J being defined as 

in which R J is the cross-product matrix of r J and 1 is the 3 x 3 identity 
matrix. Therefore, the expression sought for (B1)J takes the form 

(8.75a) 

A similar procedure can be followed to find (B2 ) J, the final result being 

. 1 T T 
((}2)J = AJ f J (1 - eJeJ )RJt, J = I, II, ... , VI (8.75b) 

thereby completing the calculations required to obtain the rates of all actu
ated joints. Note that the unit vectors involved in those calculations, eJ, f J , 
and gJ, are computed from the leg inverse kinematics, as discussed above. 

The velocity analysis of the planar and spherical parallel manipulators of 
Figs. 8.13 and 8.14 are outlined below: Using the results of Subsection 4.8.2, 
the velo city relations of the Jth leg of the planar manipulator take the form 

(8.76) 

where JJ is the Jacobian matrix of this leg, as given by eq.(4.107), while 
iJ J is the 3-dimensional vector of joint rates of this leg, i.e., 

1 
ErJ2 

J = I, II, III 

For purposes of kinematic velocity control, however, we are interested 
only in the first joint rate of each leg; i.e., aB we need to determine in order 
to produce a desired twist of the end-effector is not all of the foregoing nine 
joint rates, but only BIl , BIn, and BIln. Thus, we want to eliminate from 
eq.(8.76) the unactuated joint rates BJ2 and BJ3 , which can be readily done 
if we multiply both sides of the said equation by a 3-dimensional vector 
llJ perpendicular to the second and the third columns of J J. This vector 
can be most easily determined as the cross product of those two columns, 
namely, as 

_. . [-r}'2ErJ3 ] 
II = JJ2 X JJ3 = 

rJ2 - rJ3 

Upon multiplication of both sides of eq.(8.76) by ll}', we obtain 

[-r}2Er J3 + (r J2 - r J3fErJl] BJl = -(r}'2ErJ3)W + (r J2 - r J3f C 
(8.77) 
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and hence, we can solve directly for iJ Jl from the foregoing equation, thereby 
deriving 

iJ _ -(r}2 ErJ3)w+(rJ2-rJ3)Tc 
Jl - -r}2ErJ3 + (rJ2 - rJ3)TErJ1 

(8.78a) 

Note that eq.(8.77) can be written in the form 

(8.78b) 

with JJ and k J defined, for J = I, II, III, as 

jJ == (rJ2 - rJ3fErJ1 - r}2ErJ3, k J == [r}2ErJ3 (rJ2 - rJ3)Tf 
(8.78c) 

If we now define further 

. T 
OJ3] 

and assemble all three foregoing joint-rate-twist relations, we obtain 

Je = Kt (8.79) 

where J and Kare the two manipulator Jacobians defined as 

J == diag(jI, JII, jm), K == [~t 1 
km 

(8.80) 

Expressions for the joint accelerations can be readily derived by differenti
ation of the foregoing express ions with respect to time. 

The velo city analysis of the spherical parallel manipulator of Fig. 8.14 
can be accomplished similarly. Thus, the velocity relations of the Jth leg 
take on the form 

JJeJ = W, J = I, II, III 

where the Jacobian of the Jth leg, J J, is defined as 

J J == [eJ1 eJ2 eJ3] 

(8.81) 

while the joint-rate vector of the Jth leg, eJ , is defined exactly as in the 
planar case analyzed above. Again, for kinematic velocity control purposes, 
we are interested only in the actuated joint rates, namely, iJ 11, iJ IIl, and 
iJ II11. As in the planar case, we can eliminate iJ J2 and iJ J3 upon multiplica
tion of both sides of eq.(8.81) by a vector nJ perpendicular to the second 
and the third columns of J J. An obvious definition of this vector is, then, 

The desired joint-rate relation is thus readily derived as 

. . T 
JJOJ1 = kJw, J = I, II, III (8.82) 
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where j J and k J are now defined as 

jJ == neJl x eJ2 . eJ3 

k J == eJ2 x eJ3 

(8.83a) 

(8.83b) 

The accelerations of the actuated joints can be derived, again, by differen
tiation of the foregoing expressions. 

We can then say that in general, parallel manipulators, as opposed to 
serial ones, have two Jacobian matrices. 

8.4 Multifingered Hands 

Shown in Fig. 8.15 is a three-fingered hand with fingers A, B, and C, each 
finger supplied with three revolute joints. Each finger of this hand is sup
plied with two revolutes of parallel axes that are normal to the axis of the 
third one. Thus, each finger comprises three links, the one closest to the 
palm P being of virtually zero length. Of the other two, that in contact 
with the object is called the distal phalanx; its neighboring link is called 
the proximal phalanx. Moreover, each finger is coupled to the hand palm P 
via arevolute, while the contact between the finger tip and the hand-held 
object 0 is assumed to take place at one point, i.e., the fingers are assumed 
to be ham, as opposed to soft; for the latter, contact takes place over a fi
nite area. Thus, while hard fingers can exert only force and no moment on 
the manipulated object, soft fingers can exert both force and moment. For 
the sake of conciseness, we will deal only with hard fingers here. Let the 
contact points of fingers A, B, and C with 0 be denoted by Ao , Ba, and 
Co, respectively. The purpose of the hand is to manipulate 0 with respect 
to P. The motion of 0, moreover, can be specified through its pose, given 
in turn by the position vector 0 of one of its points, 0, and its orientation 
matrix Q with respect to a frame fixed to P. Let a, b, and c denote the 
vectors directed from ° to Ao, Ba, and Co, respectively, when 0 is in its 
reference pose, at which Q = 1. Hence, the position vectors ao, bo , and 
Co of Ao , Ba, and Co are given by 

ao =o+Qa 

bo = o+Qb 

Co = o+Qc 

(8.84a) 

(8.84b) 

(8.84c) 

Thus, the location of the three contact points is fully determined if the 
pose of P and the locations of Ao , Ba, and Co in 0 are given. Once the 
position vectors of the three contact points are known, determining the joint 
variables to take 0 to the desired pose reduces to solving a 3-dimensional 
positioning problem for each finger, with three joints-a problem already 
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FIGURE 8.15. A three-fingered hand. 

discussed in Subsection 4.4.1. The joint rates and accelerations are then 
determined as in Sections 4.4 and 4.6. 

While the mechanics of grasping is quite elaborate, due to the defor
mation of both fingers and object, some assumptions will be introduced 
here to produce a simple model. One such assumption is rigiditYi a second 
is smoothness, under which each finger is capable of exerting only normal 
force on the object. Moreover, this force is unidirectional, for the finger 
cannot exert a pull on the object. The smoothness and rigidity assumption 
bring about limitations, for they require a rather large number of fingers 
to exert an arbitrary wrench on the grasped object, as shown below. 

We assurne that we have a rigid object 0 bounded by a surface S that is 
smooth almost everywhere, i.e., it has a well-defined normal n everywhere 
except at either isolated points or isolated curves on S. Below we show 
that in order to exert an arbitrary wrench W onto 0, a hand with rigid 
and smooth fingers should have at least seven fingers. Assurne that the n 
contact points on S are { Pi}f and that we want to find n pressure values 
{Ailr at the contact points that will produce the desired wrench W onto 
o. 

Moreover, let the unit normal at Pi be denoted by ni and the vector 
directed from 0 to Pi be denoted by Pi, as shown in Fig. 8.16 

The wrench W i exerted by each finger onto 0 at Pi is dearly 
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([) 

o 

FIGURE 8.16. Geometry of grasped object O. 

Upon equating the resultant wrench with the desired wrench, we obtain 

Ln [-Pi X ni] ._ A, - W 
-n° 

1 ' 

or in compact form, as 
GA=-W (8.85a) 

where G is the 6 x n grasping matrix and A is the n-dimensional vector of 
press ure values, Le., 

G == [PI x ni ni Pn X nn] 
nn ' 

(8.85b) 

Note that the ith column of the grasping matrix is nothing but the array 
of Plücker coordinates of the line of action of the force exerted by the ith 
finger on the object, in ray coordinates-see Subsection 3.2.2. 

Thus, for n = 6, a unique pressure vector is obtained as long as G is 
nonsingular. However, negative values of {Adl are not aHowed, and since 
not hing prevents these values from becoming negative, six fingers of the 
type considered he re are not enough. We must thus have at least seven 
such fingers in order to be able to apply an arbitrary wrench onto the 
body. For n = 7 and a fuH-rank 6 x 7 grasping matrix, we can generate 
nonnegative values of {Ai}l as shown below: Let u be a unit vector spanning 
the nuHspace of G. Then an arbitrary A can be expressed as 

A = AQ + IlU 

where AQ is a particular solution of eq.(8.85a) and Il is a scalar, as yet to 
be determined. For example, if AQ is chosen as the minimum-norm solution 
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FIGURE 8.17. A prototype of the KU Leuven three-fingered hand (Courtesy of 
Prof. H. van Brussel). 

of eq.(8.85a), then we have, explicitly, 

Ao = -Gtw 

where Gt is the generalized inverse of G, defined as 

Note that for n hard fingers, the 6 x 6 product GGT has the general form 
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Although a symbolic expression for the inverse of H is not possible in the 
general case, we can always express this inverse in block form, namely, 

where consistently, H ll has units of meter-2 , H 12 has units of meter-I, 
and H 22 is dimensionless. Moreover, we can partition G in the form 

in which A has units of meter, while B is dimensionless. Hence, the product 
GTH takes on the form 

and hence, the left-hand blockofthe foregoing product has units ofmeter-1 , 

while the right-hand block is dimensionless. Upon multiplying the desired 
wrench w from the left by this product, the result, AO, has consistently 
units of Newton. 

Furthermore, let gi be the ith component of Gtw and let gm be defined 
as 

gm == m~n{gd 
• 

Now, if 9m 2: 0, then J-t = O. Otherwise, we make 

gm + J-tUm = 0 

with Um denoting the mth component of U, and hence, 

gm 
J-t=-

Um 

thereby guaranteeing that the components of vector Aare nonnegative. 
In the presence of friction, however, fewer than six fingers suffice to grasp 

an object. Moreover, in the presence of friction, the force transmitted by 
a finger has, in addition to its normal component, a tangential component 
that, hence, gives rise to a contact force making a nonzero angle with the 
normal Di to the object surface at the ith contact point. Therefore, by virtue 
of the linear relation between the normal and the tangential components 
of the transmitted force, given by the coefficient of friction J-t, this force 
is constrained to lie within the jriction cone. This cone has its apex at 
the contact point Pi, its elements making an angle 0: with the normal, 
that is given by 0: = arctan(J-t). Moreover, by virtue of the fundamental 
assumption of Coulomb friction analysis, J-t lies between 0 and 1, and hence, 
0: is constrained to lie between 0° and 45°. 



www.manaraa.com

8.5 Walking Machines 341 

Now, as long as the normal force exerts a push on the object, the coupling 
between the distal phalanx and the object can be modeled with a spherical 
joint, the underlying kinematic analysis thus becoming that of a parallel 
manipulator, as studied in Subsection 8.3. 

Shown in Fig. 8.17 is an example of a three-fingered hand. This hand 
was developed at the Katholieke Universiteit Leuven (Van Brussel et al. , 
1989). 

The literat ure on multifingered hands and the problem of grasping is 
far rieher than we can afford to describe here. Extensive studies on these 
subjects have been recently reported by Raynaerts (1995) and Teiehmann 
(1995. ) 

8.5 Walking Machines 

Besides the walking machines introduced in Chapter 1, namely, the OSU 
Adaptive Suspension Vehicle and the TUM Hexapod, other legged ma
chines or leg designs are emerging with special features. For example, 
CARL, shown in Fig. 8.18, is a compliant articulated robot leg that has been 
designed at McGill University's Centre for Intelligent Machines (CIM) by 
Prof. Buehler and his team (Menitto and Buehler, 1996). This leg contains 
an actuation package with a high load-carrying capacity (ATLAS) and an 
antagonistic pair of concentric linear-to-angular displacement deviees. The 
leg has four degrees of freedom, of which two are actuated by ATLAS and 
one by a harmonic drive motor, while one is unactuated. This leg design 
is intended to provide locomotion to a quadruped that is currently under 
design at CIM. 

As nature shows in mammals, four legs are necessary to guarantee the 
static equilibrium of the body while one leg is in the swing phase. Static 
equilibrium is achieved as long as the horizontal projection of the mass 
center of the overall body-Iegs system lies within the triangle defined by 
the contact points of the three legs that are in the stance phase. More than 
four legs would allow for greater mobility. For purposes of symmetry, some 
walking machines are designed as hexapods, so as to allow for an equal 
number of legs in the swing and the stance phases. 

We undertake the kinematic analysis of walking machines using the 
hexapod displayed in Fig. 8.19. 

Furthermore, contact with the ground is assumed to take place such that 
the ground can exert only a "pushing" force on each leg but no moment. 
Thus, while we can model the contact between leg and ground as a spherical 
joint, care must be taken so that no pulls of the ground on the leg are 
required for a given gait. 

Additionally, we shall assurne that the leg is actuated by three revolutes, 
namely, those with variables (}4, (}5, and (}6 in Fig. 8.20, where 9 denotes 
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FIGURE 8.18. The compliant articulated robot leg (Courtesy ofProf. M. Buehler). 

the ground and ß the body of the machine. A photograph of one of the six 
identicallegs of the walking machine developed at the Technical University 
of Munich, introduced in Fig. 1.9, is included in Fig. 8.21. The Denavit
Hartenberg parameters of this leg, proceeding from the ground upwards, are 
displayed in Table 8.7. Note that the architecture of this leg is simply that 
of a three-revolute manipulator carrying a spherical joint at its end-effector, 
similar to that of the decoupled manipulators studied in Section 4.4. The 
spherical joint accounts for the coupling of the leg with the ground. We are 
thus assuming that when a leg is in contact with the ground, the contact 
point of the leg is immobile. At the same time, the motion of the body ß is 
prescribed through the motion of a point on the axis of the revolute coupled 
to the body. Such a point is indicated by PJ for the Jth leg. Moreover, the 
point of the Jth leg in contact with the ground will be denoted by OJ. 
Thus, when prescribing the motion of the body through that of each of 
the six points PI, PlI, ... , PVI, the rigid-body compatibility conditions of 
eqs.(7.14), (7.15), and (7.25) must be observed. The pose of the body ß is 
thus specified by the position of a point C of the body and the orientation 
matrix Q of the body with respect to a frame fixed to the ground, the 
position vector of C in that frame being denoted by c. The specification 
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FIGURE 8.19. A general hexapod. 

of points PI to PV1 thus follows from the knowledge of c and Q, thereby 
guaranteeing compliance with the above-mentioned constraints. 

Furthermore, a maneuver of B, given by a prescribed pose, can be a
chieved by suitable values of the variables associated with the actuated 
joints, which thus leads to a problem of inverse kinematics associated, again, 
with a parallel manipulator. 

The mechanical system that results from the kinematic coupling of the 
machine legs with the ground is thus equivalent to a parallel manipulator. 
The essential difference between a walking machine and a parallel manip
ulator is that the former usually involves more actuators than degrees of 
freedom. This feature is known as redundant actuation and will not be 
pursued here. 

TABLE 8.7. DH Parameters of the Leg of the TU-Munich Walking Machine 

i ai (mm) bi (mm) Cti 

1 17 0 90° 
2 123 0 180° 
3 116 0 0° 
4 0 0 90° 
5 0 0 90° 
6 0 0 0° 
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FIGDRE 8.20. One of the legs of a walking machine with three actuated revolutes. 

FIGDRE 8.21. One of the six identieallegs of the TD Munieh Hexapod (Courtesy 
of Prof. F. Pfeiffer. Reprodueed with permission of TSI Enterprises, Ine.) 
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8.6 Rolling Robots 

While rolling robots are currently under development for autonomous op
eration on rough terrain, we focus here on the simplest ones, i.e., robots 
meant for tasks on horizontal surfaces, and so, their platforms undergo 
planar motion, which greatly simplifies their kinematics. 

Rolling robots are basically of two kinds, depending on whether they 
are supplied with conventional or with omnidirectional wheels. Robots 
with conventional wheels are capable only of 2-dof motions, and hence, 
are kinematically equivalent to conventional terrestrial vehicles. However, 
robots with omnidirectional wheels (ODWs) are capable of 3-dof motions, 
which increases substantially their maneuverability. Below we outline the 
kinematics of the two kinds of robots. 

8.6.1 Robots with Conventional Wheels 

We begin with robots rolling on conventional wheels. Since these have two 
degrees of freedom, they need only two actuators, the various designs avail
able varying essentially in where these actuators are located. The basic 
architecture of this kind of robot is displayed in Fig. 8.22a, in which we 
distinguish a chassis, or robot body, depicted as a triangular plate in that 
figure: two coaxial wheels that are coupled to the chassis by means of revo
lutes ofaxes passing through points 0 1 and O2 ; and a third wheel mounted 
on a bracket. 

FIGURE 8.22. A 2-dof rolling robot: (a) its general layout; and (b) a detail of its 
actuated wheels. 
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Now, the two actuators can be placed in two essentially different arrays. 
In the first array, not shown in the figure, one actuator is used for propulsion 
and the other for steering, the former being used to provide locomotion 
power to the common two-wheel axle via a differential ge ar train. This 
train is required to allow for different angular velocities of the two coaxial 
wheels. Moreover, the orientation of the mid-plane of the steering wheel, 
defined by angle 'l/J, is controlled with the second actuator. This design 
has some drawbacks, namely, (i) the two motors serving two essentially 
different tasks call for essentially different operational characteristics, to 
the point that both may not be available from the same manufacturer; (ii) 
the power motor calls for velocity control, the steering motor for position 
control, thereby giving rise to two independent control systems that may 
end up by operating in an uncoordinated fashion; and finally, (iii) the use 
of a differential gear train increases costs, weight, and brings about the 
inherent backlash of gears. 

In the second actuation array, shown in Fig. 8.22, the two coaxial wheels 
are powered independently, thereby doing away with the differential train 
and its undesirable side effects, the third wheel becoming a caster wheel. 
Moreover, the orientation of the latter is determined by friction and iner
tia forces, thereby making unnecessary the steering control system of the 
first array. Below we analyze the kinematics of a robot with this form of 
actuation. 

Let point C of the platform be the operation point, its position vector in 
a frame fixed to the ground being denoted by c. Additionally, let w be the 
scalar angular velocity of the platform ab out a vertical axis. By virtue of 
the 2-dof motion of this robot, we can control either the velo city C of C or 
a combination of wand a scalar function of c by properly specifying the 
two joint rates (h and (h. However, we cannot control the two components 
of c and w simultaneously. 

In order to proceed with the kinematic analysis of the system at hand, 
we define an ort ho normal triad of vectors whose orient at ion is fixed with 
respect to the chassis. Let this triad be denoted by {i, j, k}, with k point
ing in the upward vertical direction. Thus, the velocities Öi of points Oi, 
for i = 1,2, are given by 

Öi = rOd, i = 1,2 (8.86a) 

and moreover, the angular velocity w of line 0 10 2 in planar motion, which 
is the same as that of the platform, can be readily expressed as 

(8.86b) 

its positive direction being that of k. 
Furthermore, the velocity of C can now be written in 2-dimensional form 

as 
c = Öl + wE(c' - oJ) (8.86c) 



www.manaraa.com

8.6 Rolling Robots 347 

with c' denoting the position vector of point C', the orthogonal projec
tion of C onto the horizontal plane of 0 1 and O2 , while E is as defined in 
eq.(4.102). Thus, all vectors of eq.(8.86c) are 2-dimensional. Upon substi
tution of eqs.(8.86a & b) into eq.(8.86c), we obtain an expression for c in 
terms of the joint rates, namely, 

(8.86d) 

Equations (8.86b & d) express now the differential direct kinematics 
relations of the robot under study. In compact form, these relations are 
expressed as 

t = LiJa 

with the 3 x 2 matrix L defined as 

L = [ r/l 
- (ar/l)i + (r/2)j 

-r/l ] 
-(ar/l)i + (r/2)j 

(8.86e) 

(8.86f) 

Moreover, the planar twist t of the pi at form and the 2-dimensional vector 
iJa of actuated joint rates are defined as 

(8.86g) 

Computing the joint rates from the foregoing equations, Le., solving the 
associated inverse kinematics problem, is now a trivial task. The inverse 
kinematics relations are computed below by noticing that eq.(8.86b) pro
vides an equation for the joint-rate difference. Thus, all we need now is a 
second equation for the joint-rate sumo By inspection of eq.(8.86d), it is 
apparent that we can derive this relation by dot-multiplying both sides of 
this equation by j, thereby obtaining 

(8.87) 

The two equations (8.86b) and (8.87) can now be cast into the usual form 

(8.88a) 

where the two robot Jacobians J and Kare given below: 

[1 -1] 
J == 1 1 ' 

OT ] 
(2/r)F 

(8.88b) 

Note that J is a 2 x 2 matrix, but K is a 2 x 3 matrix. 
The inverse kinematics relations are readily derived from eq.(8.88a), 

namely, 

. 1 (l 2) 01 = - -w +-iJ 
2 r r 

iJ2 = -~ (iw - ~iJ) 
2 r r 
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where iJ == c .j. 
Now, in order to complete the kinematic analysis of the robot at hand, 

we calculate the rates of the unactuated joints, ih and -0. To this end, 
let Wi, for i = 1, ... ,3, and Ö3 denote the 3-dimensional angular velo city 
vector of the ith wheel and the 3-dimensional velo city vector of the center 
of the caster wheel. Likewise, W4 denotes the scalar angular velocity of the 
bracket. 

We thus have, for the angular velo city vectors of the two actuated wheels, 

In the ensuing derivations, we will need the velocities of the centers of the 
two actuated wheels, which are given by 

Öl = WI x rk = rÖd 
Ö2 = W2 x rk = rÖ~ 

Moreover, the angular velocity of the caster wheel can be written most 
easily in the frame fixed to the bracket, { e3, f3 , k}, namely, 

(8.89) 

with 'IjJ denoting the angle between vectors j and e3 of Fig. 1O.6a, measured 
in the positive direction of k, as indicated in the layout of Fig. 8.23. 

Note that vector e3 is parallel to the axis of rolling of the caster wheel, 
while f3 is a horizontal vector perpendicular to e3. These two sets of unit 
vectors are related by 

e3 = - sin 1/Ji + cos 1/Jj 
f3 = - cos 1/Ji - sin 1/Jj 

(8.90a) 

(8.90b) 

FIGURE 8.23. Layout of the unit vectors fixed to the platform and to the bracket. 
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their inverse relations being 

i = - sin 'ljJe3 - cos 'ljJf3 

j = cos 'ljJe3 - sin 'ljJf3 

(8.90c) 

(8.90d) 

Furthermore, the velo city of the center of the caster wheel is derived as 

(h = W3 x rk = -rÖ3f3 

while the scalar angular velocity of the bracket, W4, is given by 

. r· . . 
W4 = W + 'IjJ = l(fh - (h) + 'IjJ (8.91) 

In the sequel, we shall need c in bracket coordinates. Such an expression is 
obtained from eqs.(8.86d) and (8.90c & d), namely, 

r·· r·· c = [-al (81 - ( 2 ) sin 'IjJ + 2 (81 + (2 ) cos 'IjJ]e3 

r·· r·· 
-[a l (81 - ( 2 ) cos'IjJ + 2(81 + (2 ) sin 'IjJ]f3 (8.92) 

Expressions for the dependent rates in terms of the independent ones, 
Öl and Ö2, are readily derived. To this end, we express the velo city of P in 
two independent forms, one in terms of the velo city of 0 3 and the other in 
terms of the velocity of C, i.e., 

i> = Ö3 + W4k x (p - 03) 

i> = c + wk x (-bj) 

(8.93a) 

(8.93b) 

Upon equating the right-hand sides of the above equations, we obtain a 
3-dimensional vector equation relating dependent with independent rates, 
namely, 

-rÖ3 f3 + (w + "jJ)k x (p - 03) = c + bwi 

where we have recalled the expressions derived above for Ö3 and W4. Further, 
we rewrite the foregoing equation with the unknown rates, Ö3 and "jJ, on 
the left-hand side, i.e., 

Moreover, we note that, from Fig. 8.22, 

p - 03 = -df3 + (h - r)k 

and hence, 
k x (p - 03) = de3 

equation (8.94) thus becoming 

- rÖ3f3 + "jJde3 = c + w(bi - de3) 

(8.94) 

(8.95) 
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Now it is a simple matter to solve for 03 and "j; from eq.(8.95). Indeed, 
we solve for 03 by dot-multiplying both sides of the above equation by f3 . 

Likewise, we solve for "j; by dot-multiplying both sides of the same equation 
by e3, thus obtaining 

-r03 = c . f3 + wbi . f3 

d"j; = c . e3 + w(bi . e3 - d) 

Now, by recalling the expressions derived above for wand C, we obtain 

r·· r·· 
C . f3 = -al ((h - O2 ) cos 'Ij; - 2 (01 + O2 ) sin 'Ij; 

r·· r·· 
c·e3 = -al (01- 02)sin'lj;+ 2(01 +02)COS'lj; 

i . f3 = - cos 'Ij;, i . e3 = - sin 'Ij; 

Therefore, 

. .. 1 .. 
03 = a COS'lj;(Ol - O2) + 2 (sin 'Ij;)(01 + O2 ) 

"j; = p [-(a sin 'Ij; + b)( 01 - ( 2 ) + ~ (cos 'Ij; )(Ol + ( 2 )] 

with the definitions given below: 

a+b 
a=--

- l ' 
d 

b =- l' 
r 

p= --d 

(8.96a) 

(8.96b) 

(8.97) 

Hence, if we let iJu be the vector of unactuated joint rates, iJu == [03 "j;jT, 
then we have 

(8.98a) 

with 8 defined as 

8= [acos'lj;+(Sin'lj;)/2 -acos'lj;+(Sin'lj;)/2] 
- p[-asin'lj;+(cos'lj;)/2-bj p[asin'lj;+(cos'lj;)/2+bj (8.98b) 

thereby completing the intended kinematic analysis. 

8.6.2 Robots with Omnidirectional Wheels 

In general, omnidirectional wheels (ODWs) allow for two independent trans
lational motions on the supporting floor and one independent rotational 
motion about a vertical axis. Based on the shapes of the wheels, more
over, ODWs can be classified into spherical wheels and Mekanum wheels, 
the latter also being known as ilonators. We focus here on ODWs of the 
Mekanum type and assurne that the robot of interest is equipped with n of 
these. 
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(a) (b) 

FIGURE 8.24. (a) The Mekanum Wheel; (b) its side view. 

The Mekanum wheel bears a set of rollers mounted along the periphery 
of the wheel hub at a given angle, as shown in Fig. 8.24a. Furthermore, the 
rollers are shaped so that the wheel appears as circular on its side view, as 
shown in Fig. 8.24b, in order to ensure a smooth motion. Pairwise orthogo
nal unit vectors ei, f i and gi, h i are defined on the mid-planes of the wheel 
hub and on those of the roller in contact with the floor, respectively. Note 
that the roller in contact with the floor is termed active in the discussion 
below. Now we take to finding the kinematic relation between the wheel 
joint rates {Bi} and the Cartesian velocity variables of the robot, namely, 
the scalar angular velocity wand the 2-dimensional velo city vector C of the 
mass center of the platform. To this end, we express the velocity Öi of the 
centroid Gi of the ith wheel in two different forms: first we look at this 
velocity from the active roller up to the centroid Gi; then from the mass 
center C of the platform to Gi. 

If we relate the velocity of Gi with that of the contact point of the active 
roller with the ground, with the aid of Fig. 8.25 we can then write 

(8.99) 

with Vi defined as the relative velo city of Gi with respect to ~. Now let 
Wh and W r denote the angular velo city vectors of the hub and the roller, 
respectively, i.e., 

We thus have 
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FIGURE 8.25. The active roller of the ith wheel. 

where a and bare the height of the axis of the wheel hub, as shown in 
Fig. 8.24b, and the radius of the rollers, respectively. In addition, ei denotes 
the rate of the wheel hub, while ~i denotes that of the active roller, which 
are positive in the directions of vectors ei and gi, respectively. Hence, 

(8.100) 

Moreover, 

so that 
Vi = -ei(a - b)fi (8.101) 

thereby obtaining the desired expression for Öi, namely, 

Öi = -aeifi - b~ihi (8.102) 

A general layout of the ith ODW with roller axes at an angle ai with 
respect to the normal ei to the midplane of the corresponding hub is shown 
in Fig. 8.26. The subscript i is associated with both the ith wheel and its 
active roller. Moreover, the velo city of the ith wheel, Öi, can be expressed 
in terms of the Cartesian velo city variables, c and w, as 

(8.103) 

where we have used a 2-dimensional vector representation, with d i defined 
as the vector directed from point C to the centroid Oi of the hub and E 
defined as in eq.(4.102). Furthermore, since all rollers are unactuated and 
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FIGURE 8.26. The layout of the ith wheel with respect to the robot platform. 

they rotate idly, the value of ~i is immaterial to our study. Hence, we take 
to eliminating this variable from the foregoing equations, which is done 
by dot-multiplying both sides of eq.(8.102) with gi, normal to h i , thereby 
deriving 

But 

Therefore, 
g'[ Öi = -a(sin ai)Oi (8.104) 

The same multiplication performed on eq.(8.103) yields 

g'[ Öi = (g'[Edi)w + gT c (8.105) 

Upon equating the right-hand sides of eqs.(8.104) and (8.105), we derive 
the desired relation, namely, 

. . T 
-a(slllai)Bi=kit, i=l, ... ,n (8.106) 

where the 3-dimensional vector k i is defined as 

k i = [ gT:d i ] 

and the twist vector t is as defined in eq.(8.86g). We now define the vector 
of wheel rates iJ in the form 

(8.107) 
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If the n equations of eq.(8.106) are now assembled, we obtain 

Je = Kt (8.108) 

where if we ass urne that all angles ai are identical and labeled a, the n x n 
Jacobian J and the n x 3 Jacobian K take the forms 

J == -asinal (8.109a) 

(8.109b) 

with 1 denoting the n x n identity matrix. 
Given eqs.(8.109a) and (8.109b), the differential inverse kinematics can 

be resolved as 
. 1 

(J = ---Kt (8.110) 
asina 

whence it is apparent that sin a must be different from zero, Le., the axes 
of the rollers must not be parallel to the axis of the hub. If these axes are 
parallel, then the ODWs reduce to conventional wheels. 

On the other hand, the twist can be obtained from eq.(8.108), for n = 3, 
as 

(8.111) 

where K- 1 can be found in c10sed form as 

with ß and {ri H defined as 

gfEg1 ] 

E(rlg2 - r2g1) 
(8.112a) 

ß == det(K) = rlgfEg2 + r2gfEg2 + r3grEg1 

ri == g;Ed i , i = 1,2,3 

(8.112b) 

(8.112c) 

which thus completes the kinematic analysis of the system at hand. 
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Trajectory Planning: 
Continuous-Path Operations 

9.1 Introduction 

As a follow-up to Chapter 5, where we studied trajectory planning for pick
and-place operations (PPO), we study in this chapter continuous-path op
erations. In PPO, the pose, twist, and twist-rate of the EE are specified 
only at the two ends of the trajectory, the purpose of trajectory planning 
then being to blend the two end poses with a smooth motion. When this 
blending is done in the joint-variable space, the problem is straightforward, 
as demonstrated in Chapter 5. There are instances in which the blending 
must be made in the Cartesian-variable space, in which advanced notions of 
interpolation in what is known as the image space of spatial displacements, 
as introduced by Ravani and Roth (1984), are needed. The image space 
of spatial displacements is a projective space with three dual dimensions, 
which means that a point of this space is specified by four coordinates
similar to the homogeneous coordinates introduced in Section 2.5-of the 
form Xi + t~i, for i = 1,2,3,4, where t is the dual unity, which has the 
property that t 2 = O. The foregoing coordinates are thus dual numbers, 
their purpose being to represent both rotation and translation in one sin
gle quantity. In following Ravani and Roth's work, Ge and Kang (1995) 
proposed an interpolation scheme that produces curves in the image space 
with second-order geometrie continuity, which are referred to as G2 curves. 
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These interpolation techniques lie beyond the scope of the book and will 
be left aside. 

The purpose of this chapter is to develop motion interpolation techniques 
in Cartesian space that produce smooth motions in both Cartesian and joint 
spaces. Motion interpolation in joint space was discussed in Chapter 5, the 
present chapter being devoted to motion interpolation in Cartesian space. 
To this end, we resort to basic notions of differential geometry. 

9.2 Curve Geometry 

Continuous-path robotics applications appear in operations such as arc
welding, flame-cutting, deburring, and routing. In these operations, a tool 
is rigidly attached to the end-effector of a robotic manipulator, the tool be
ing meant to trace a continuous and smooth trajectory in a 6-dimensional 
configuration space. Three dimensions of this space describe the spatial 
path followed by the operation point of the EE, while the remaining three 
describe the orientation of the EE. Some applications require that this task 
take place along a warped curve, such as those encountered at the intersec
tions of warped surfaces, while the path is to be traversed as a prescribed 
function of time. This function, moreover, is task-dependent; e.g., in arc
welding, the electrode must traverse the path at a constant speed, if no 
compensation for gravity is taken into account. If gravity compensation 
is warranted, then the speed varies with the orientation of the path with 
respect to the vertical. Below we will define this orientation as that of the 
Frenet-Serret frame associated with every point of the path where the path 
is smooth. 

Moreover, for functional reasons, the orientation of the EE is given as a 
rotation matrix that is, in turn, a prescribed smooth function of time. In 
arc-welding, for example, the orientation of the electrode with respect to 
the curve must be eonstant. The trajectory planning of the eonfiguration 
subspace associated with the warped path is more or less straightforward, 
but the planning of the trajectory associated with the orientation subspace 
is less so. 

While most methods of trajeetory planning at the Cartesian-coordinate 
level focus on the path followed by the operation point, the underlying in
verse kinematics of a six-axis robotie manipulator requires the specifieation 
of the orientation of the EE as well. In the presence of simple manipulators 
with a spherieal wrist, as those studied in Subsection 4.4.2, the positioning 
and the orient at ion tasks are readily separable, and hence, the planning of 
the two tasks can be done one at a time. In other instances, e.g., in most 
arc-welding robots, such aseparation is not possible, and both tasks must 
be planned coneurrently, which is the foeus of our discussion below. Here, 
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we follow the technique presented in (Angeles, Rojas, and Lopez-Cajun, 
1988). 

Crucial to our discussion is the concept of path orientation. Let r be a 
warped curve in 3-dimensional space that is smooth in a certain interval 
of interest for our diseussion. Under these eonditions, we ean associate 
with every point of this interval an orthonormal triad of vectors, i.e., a 
set of unit veetors that are mutually orthogonal, namely, the tangent, the 
normal, and the binormal veetors of r. Therefore, when this set of veetors 
is properly arranged in a 3 x 3 array, a rotation is obtained. This matrix 
thus represents the orientation of r. In order to eharacterize these vectors, 
let s be the are length measured along r from a certain reference point 
on this curve. Below we review the basic differential-geometrie concepts 
pertaining to our diseussion. 

The tangent, normal, and bi normal unit vectors, et, en , and eb, respee
tively, associated with every point of r where this eurve is smooth, are 
generically termed here the F'renet-Serret vectors. These vectors are defined 
as 

et = r' 
r' x r" 

eb = -:-;---.,..,. 
Ilr' x r"ll 

en=ebxet 

(9.1a) 

(9.1b) 

(9.1c) 

where r' stands for dr / ds and r" for d2r / ds2 • Now the Frenet-Serret re
lations among the three aforementioned unit vectors and the eurvature I), 

and torsion T of rare recalled (Brand, 1965): 

det 
-=I),en 
ds 

(9.2a) 

(9.2b) 

(9.2e) 

Moreover, the curvature and torsion ean be ealculated with the aid of the 
formulas 

I), = IIr' x r"ll 
r' x r" . rlll 

(9.3a) 

(9.3b) 

where r lll stands for d3r / ds3 . Furthermore, differentiation of I), and T, as 
given above, with respect to s yields 

(r' x r lll ) 
I),'(s) = (r' x r")· (9.4a) 

I), 

r' x r" . r(iv) - 2T(r' x r") . (r' x r lll ) 

T'(S) = 2 (9.4b) 
I), 
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where r(iv) stands for d4r/ds4 . The geometrie interpretation of the curva
ture is the rate of change of orientation of the tangent vector with respect 
to the are length; that of the torsion is the rate at which the curve quits the 
plane of the tangent and normal vectors. Thus, at segments where the curve 
is straight, the curvature vanishes, whereas at segments where the curve 
is planar, the torsion vanishes. Now, from the Frenet-Serret formulas and 
the chain rule, we can derive the time-rate of change of the Frenet-Serret 
vectors, namely, 

. det. . 
et == Tss= SK,en 

. den. . . 
en == ds s= -SK,et + STeb 

. deb . . 
eb == -8= -STen 

ds 

(9.5a) 

(9.5b) 

(9.5c) 

Furthermore, let w be the angular velocity of the Frenet-Serret frame. Then 
clearly, 

et == w x et 

en==wxen 

eb == w x eb 

(9.6a) 

(9.6b) 

(9.6c) 

Upon equating pairwise the right-hand sides of eqs.(9.5a-c) and eqs.(9.6a
c), we obtain three vector equations determining w, namely, 

-Etw = sK,en 

-Enw = -SK,et + sTeb 

-Ebw = -sTen 

(9.7a) 

(9.7b) 

(9.7c) 

where we have introduced the cross-product matrices Et, E n , and E b of 
vectors et, en , and eb, respectively, thereby obtaining a system of ni ne 
scalar equations in three unknowns, namely, the three scalar components 
of w, i.e., 

Aw=b (9.8a) 

with A defined as the 9 x 3 matrix and b as the 9-dimensional vector 
displayed below: 

(9.8b) 

Although the foregoing system is overdetermined, it is consistent, and hence 
it comprises exactly three linearly independent equations, the remaining six 
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being dependent on the former. One way to reduce system (9.8a) to only 
three equations consists in multiplying both sides of this equation by AT. 
Now, the product AT A greatly simplifies because matrix A turns out to 
be isotropie, as discussed in Section 4.9, Le., its three columns are mutually 
orthogonal and all have the same magnitude. This fact can become appar
ent if we realize that the three 3 x 3 blocks of Aare cross-product matriees 
of three orthonormal vectors. Thus, 

If we now recall Theorem 2.3.4, the foregoing products take on quite simple 
forms, namely, 

E;Et = -E; = -( -1 + eten 

E~En = -E~ = -(-I+ene~) 
EfEb = -E~ = -(-1 + eben 

Moreover, for any 3-dimensional vector v, we have 

and hence, the above sum in parentheses reduces to the identity matrix, 
i.e., 

T+ T+ T-l etet enen ebeb = 

the product AT A thus reducing to 

A T A=(2)1 

Therefore, w takes on the form 

1 
w ="2 [Et E n 

or upon expansion, 

(9.10) 

However, since the Frenet-Serret triad is orthonormal, we have 

(9.11) 

Upon substitution of expressions(9.11) into the expression for w given in 
eq.(9.1O), we obtain 

w = sO (9.12) 
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where (j is the Darboux vector, defined as 

(9.13) 

Expressions for the curvature and torsion in terms of the time-derivatives 
of the position vector are readily derived using the chain rule, which leads 
to 

/'1,= 
11i- x rll 

(9.14a) 
IIi-II3 

i- x r· r 
(9.14b) T= IIi- x rll 2 

Upon differentiation of both sides of eq.(9.12), the angular acceleration 
w is derived as 

(9.15) 

where the time-derivative of the Darboux vector is given, in turn, as 

(9.16) 

in which eqs.(9.5a-c) have contributed to the simplification of the above 
expression. The time-derivatives of the curvature and torsion are readily 
derived by application of the chain rule, thereby obtaining 

i>, == 8/'1,'(8)= !..(r' x r"')· (r' x r") (9.17a) 
/'I, 

i == 8T'(8)= 82 [r' x r"· r(iv) - 2T(r' x r"')· (r' x r")] (9.17b) 
/'I, 

The time-derivative of the Darboux vector thus reduces to 

where scalars A and Bare computed as 

_ r' x r" . r(iv) - 2T(r' x r"') . (r' x r") 
A= 2 

/'I, 

B == (r' x r''') . (r' x r") 
/'I, 

and hence, the angular acceleration reduces to 

(9.18a) 

(9.18b) 

(9.18c) 

(9.19) 

From the relations derived above, it is apparent that the angular velo city 
is a bilinear function of the Darboux vector and s, while the angular accel
eration is linear in sand quadratic in s. The computational costs involved 



www.manaraa.com

9.2 Curve Geometry 361 

in the calculation of the angular velo city and its time-derivative amount to 
31 multiplications and 13 additions for the former, and 28 multiplications 
with 14 additions for the latter ('Angeles, Rojas, and L6pez-Cajun, 1988). 
Notice that the angular velocity requires, additionally, one square root. 

In the above discussion, it is assumed that explicit formulas for the two 
time-derivatives of the arc length s are available. This is often not the case, 
as we show with the examples below, whereby an intermediate parameter, 
which is easier to handle, is introduced. What we will need are, in fact, 
alternative express ions for the quantities involved, in terms of kinematic 
variables; i.e., we need time-derivatives of the position vector r rather than 
derivatives of this vector with respect to the arc length s. Below we derive 
these expressions. 

First, note that et can be obtained by simply normalizing the velo city 
vector r, namely, as 

r et=m 
where it is not difficult to realize that 

(9.20) 

(9.21 ) 

Moreover, the binormal vector eb can be derived by application of the chain 
rule to vector r', namely, 

But 

and hence, 

r" = dr' == dr'/dt == ~~(r') 
ds ds/dt s dt 

r'(s) == dr == ~ 
ds s 

sr - sr 
s3 

(9.22a) 

(9.22b) 

(9.22c) 

Now, upon substitution of expressions (9.22b & c) into eq.(9.1b), an al
ternative expression for eb is derived, in terms of time-derivatives of the 
position vector, namely, 

rxr 
eb =. Ilr x rll (9.23) 

Finally, en can be readily computed as the cross product of the first two 
vectors of the Frenet-Serret triad, namely, 

_ (r x r) x r 
en = eb x et = Ilr x rllllril (9.24) 

The time-derivatives of the Frenet-Serret vectors can be computed by 
direct differentiation of the express ions given above, namely, eqs.(9.20), 
(9.23), and (9.24). 
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9.3 Parametric Path Representation 

Only seldom is an explicit representation of the position vector r of a ge
ometrie eurve possible in terms of the are length. In most praetieal eases, 
alternative representations should be used. The representation of the posi
tion veetor in terms of a parameter a, whatever its geometrie interpretation 
may be, whether length or angle, will heneeforth be termed a parametrie 
representation of the eurve at hand. The ehoice of a is problem-dependent, 
as we illustrate with examples. 

Below we derive expressions for (a) the Frenet-Serret triad; (b) the eur
vature and torsion; and (e) the derivatives of the latter with respeet to 
the are length. All these expressions, moreover, will be given in terms of 
derivatives with respeet to the working parameter a. The key relation that 
we will use is based on the ehain rule, already reealled several times earlier. 
Thus, for any veetor v(a), 

dv dv da 

ds da ds 

However, the foregoing relation is not very useful beeause we do not have 
an explicit representation of parameter a in terms of the are length. Never
theless, we will assurne that these two variables, sand a, obey a monotonie 
relation. What this means is that 

da 0 -> 
ds 

(9.25) 

whieh is normally the ease. Under this assumption, moreover, we can write 
the derivative of v as 

dv dv/da 
ds ds/da 

where, apparently, 

ds = 11 dr 11 = Ilr'(a)1I 
da da 

Therefore, the derivative sought takes the form 

dv 

ds 

v'(a) 

Ilr'(a)11 

It go es without saying that the same relation holds for sealars, i.e., 

dv 

ds 

v'(a) 

Ilr'(a)11 

(9.26a) 

(9.26b) 

Expressions for the Frenet-Serret triad now follow immediately, i.e., 

r'(a) 
et = Ilr'fa)11 (9.27a) 
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r'(a) x r"(a) 
eb = Ilr'(a) x r"(a)II (9.27b) 

[r'(a) x r"(a)] x r'(a) 
en = eb x et = Ilr'(a) x r"(a)lIllr'(a)11 (9.27e) 

Now, paraphrasing relations (9.14a & b), we have 

Ilr'(a) x r"(a)1I ", = -"--"":"""'::-;---c;-;;-;:;-'--'-":':' 

r'(a)1I 3 
(9.28a) 

r'(a) x r"(a) . r'" 
T = --'-'--,------'-'--,....,.,..",-

r'(a) x r"(a)11 2 
(9.28b) 

the partial derivatives of the eurvature and torsion with respeet to the are 
length being eomputed in terms of the eorresponding partial derivatives 
with respeet to the parameter a, whieh is done with the aid of the ehain 
rule, i.e., 

, ",'(a) 
", (8) = Ilr'(8)11' 

, T'(a) 
T (8) = IIr'(a)1I (9.29) 

Expressions for ",' (a) and T' (a), in turn, are derived by a straightforward 
differentiation of the expressions for ", and T in terms of a, as given in 
eqs.(9.28a & b). To this end, we first reeaIl a useful expression for the 
derivative of a rational expression q(x) whose numerator and denominator 
are denoted by N(x) and D(x), respeetively. This expression is 

1 
q'(x) = D(x) [N'(x) - q(x)D'(x)] (9.30a) 

Note that nothing prevents the numerator of the foregoing rational expres
sion from being a veetor, and henee, a similar formula ean be applied to 
veetor ratios as weIl. Let the denominator of a veetor rational funetion q(x) 
be n(x). Under these eonditions, then, we have 

1 
q'(x) = D(x) [n'(x) - q(x)D'(x)] (9.30b) 

As a matter of fact, the above relation ean be extended to matrix numer
ators. Not only is this possible, but the argument ean likewise be a veetor 
or a matrix variable, and similar formulas would apply eorrespondingly. 
~ thus have, for the derivative of the eurvature, 

N ow we find the first term inside the braekets of the foregoing expression 
from the relation 

d d 
dallr'(a) x r"(a)1I 2 = 211r' x r"lIdallr' x r"ll 
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which yields 

d~jjr' X r"jj = 2jjr' ~ r"ll d~jjr'(u) x r"(u)1I 2 

But 

d d 
du jjr'(u) X r"(u)jj2 = du {[r'(u) X r"(u)]· [r'(u) X r"(u)]} 

d 
= 2[r'(u) X r"(u)]· du [r'(u) X r"(u)] (9.32) 

the derivative of the above term in brackets reducing to 

d 
du [r'(u) X r"(u)] = r'(u) X rlll(u) 

and hence, 

~ r' x r" _ [r'(u) x r"(u)]· [r'(u) x rlll(u)] 
du jj 11- jjr' x r"jj 

(9.33a) 

Furthermore, 

the last derivative again being found from an intermediate relation, namely, 

d~ IIr'(u)1I 2 = 2jjr'(u)jj d~ IIr'(u)jj 

whence, 

with 
d d 

du IIr'(u)11 2 = du [r'(u) . r'(u)] = 2r'(u) . r"(u) 

and so, 

~jjr'(u)jj = r'(u)· r"(u) d jjr'(u)jj2 
du IIr'(u)11 du 

Therefore, 

! jjr'(u)jj3 = 3jjr'(u)jjr'(u) . r"(u) (9.33b) 

Substitution of eqs.(9.33a & b) into eq.(9.31) yields the desired expression, 
namely, 

, [r'(u) x r"(u)]· [r'(u) x rlll(u)] r'(u) . r"(u) 
'" (0') = II r '(u)jj 3I1r' x r"jj - 3", jjr'(u)jj2 (9.34) 
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Likewise, 

with N and D defined as 

, ) N 
T (0' = D (9.35a) 

d d 
N == -[r'(a) x r"(a)· rll/(a)]- T-Ilr'(a) x r"(a)11 2 (9.35b) 

da da 
D == Ilr'(a) x r"(a)11 2 (9.35c) 

The first term of the numerator N of the foregoing expression can be readily 
calculated as 

~[r'(a) x r"(a) . rll/(a)] = r'(a) x r"(a) . rCiv)(a) 
da 

(9.35d) 

while the derivative appearing in the second term of the same numerator 
was obtained previously, as displayed in eq.(9.32). Upon substitution of the 
expressions appearing in eqs.(9.32) and (9.35d) into eq.(9.35a), we obtain 
the desired expression, namely, 

, r'(a) x r"(a) . [rCiV) (0') - 2n'(a) x rll/(a)] 
T (0') = Ilr'(a) x r"(a)112 (9.35e) 

thereby completing the desired relations. 

Example 9.3.1 (Planning of a gluing operation) A robot used for a glu
ing operation is required to guide the glue nozzle fixed to its end-effector 
through a helicoidal path so that the tip of the nozzle traverses the helix at 
a constant speed Vo and the end-effector maintains a fixed orientation with 
respect to the curve, i.e., with respect to the Prenet-Serret triad of the helix. 
Determine the orientation matrix Q 0/ the end-effector with respect to a 
frame {x, y, z} fixed to the robot base, as well as the angular velocity and 
angular acceleration of the end-effector. The operation is to be performed 
with a Fanuc S-300 robot, whose Denavit-Hartenberg (DH) parameters are 
given in Table 9.1, while the axis of the helix is chosen to be parallel to the 
first axis of the robot with origin at (2, -2, 1.2), the foregoing coordinates 
being given in meters. Find the joint trajectories of the robot as well as the 
associated joint rates and joint accelerations from Cartesian position, veloc
ity, and acceleration data. Verify that the joint-rate and joint-acceleration 
profiles are compatible with those of the joint variables. Assume that the ra
dius of the helix is a = 1.6 m and that its pitch is b = 2.5 m/turn. Finally, 
the gluing seam spans through one quarter of a helix turn. 

Solution: We will use a Cartesian frame fixed to the base of the robot such 
that its z axis coincides with the axis of the first revolute. The helix can 
then be given in the parametric representation shown below: 

x = 2+acosrp 



www.manaraa.com

366 9. Trajectory Planning: Continuous-Path Operations 

TABLE 9.1. DH Parameters of a Fanuc 8-300 Robot 

Link 

1 
2 
3 
4 
5 
6 

ai bi Qi 

(m) (m) (deg) 
0.0 0.9 
0.9 0.0 
0.95 0.0 
0.0 1.3 
0.0 0.0 
0.0 0.44 

y = -2 + asincp 

z = 12 + bcp 
27f 

90 
0 
90 
-90 
90 
-90 

where the parameter cp is the angle made by the projection, onto the X-Y 
plane, of the position vector of a point P of the helix with the x axis. In 
the process, we will need first and second time-derivatives of the foregoing 
Cartesian coordinates. These are given below for quick reference: 

and 

j; = -arp sin cp 

iJ = arp cos cp 
. b. 
z = 27f cp 

x = _arp2 cos cp - acp sin cp 

ii = _arp2 sin cp + acp cos cp 

.. b .. 
z= -cp 

27f 

We now impose the constant-speed condition, which leads to 

b2 
j;2 + iJ2 + z2 == a2rp2 + _rp2 = v2 

47f2 0 

and hence, 
rp=c 

where the constant c is defined as 

c == Vo 

Thus, rp is constant, and hence, 

cp = ct 



www.manaraa.com

9.3 Parametric Path Representation 367 

Moreover, in terms of constant c, the Cartesian coordinates of a point of 
the helix take on the forms 

x = 2+acosct 

y=-2+asinct 
bc 

Z = 12 +-t 
27r 

the first time-derivatives of these coordinates becoming 

:i: = -acsinct 

iJ = accosct 
. bc 
Z=-

27r 

and the corresponding second time-derivatives 

x = -ac2 cosct 

ii = -ac2 sin ct 

z=O 

Now the Frenet-Serret triad is readily calculated as 

Furthermore, 

2 [-coset] ac . 
-2 -SInct == Ken 
Vo 0 

from which it is apparent that 

[
coset] 

e n = - Si~ct 

Thus, the binormal vector eb is calculated simpIy as the cross product of 
the first two vectors of the Frenet-Serret triad, nameIy, 

[ 
-(b/27r) sin ct 1 

eb == et x en = - :0 (b/2~;OS ct 

and hence, the orientation matrix Q of the gluing nozzIe, or of the end
effector for that matter, is given by 
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Hence, 

[
-aSinet 

Q = ~ acoset 
Vo (b/27r) 

-(vo/e) cos ct 
-( vo/ e) sin ct 

o 

(b/211")sinct ] 
-(b/2~ coset 

Now, the angular velo city is determined from eq.(9.12), which requires the 
calculation of the Darboux vector, as given in eq.(9.13). Upon calculation 
of the Darboux vector and substitution of the expression thus resulting into 
eq.(9.12), we obtain 

which is thus constant, and hence, 

w=O 

Now, the coordinates of the center of the wrist, C, are determined with 
the aid of relation (4.18c), where the operation point is a point on the 
helix, i.e., p = xi + yj + zk, parameters b6, A6, and J-l6 being obtained from 
Table 9.1, namely, 

b6 = 0.440 m, A6 = COSQ:6 = 0, J-l6 = sinQ:6 = -1 

Furthermore, the numerical value of c is obtained from the helix geometry, 
namely, 

V 47r2 
e = 0.8 4 2 62 2 2 = 0.48522 S-l 

11" x 1. +.5 

Upon substitution in eq.( 4.18c) of the entries found above for Q, along with 
the numerical values, we obtain the Cartesian coordinates of the center C 
of the spherical wrist of the robot as 

[xc] [ 2 + 1.16cos(0.48522t) 1 
yc = -2 + 1.16 sin(0.48522t) 
zc 12 + 0.19306t 

in meters. Apparently, point C describes a helicoidal path as weIl, although 
of a smaller radius, that is coaxial with the given helix. 

Now the time-histories of the joint angles are computed from inverse 
kinematics. Note that the robot at hand being of the decoupled type, it 
aIlows for a simple inverse kinematics solution. The details of the solution 
were discussed extensively in Section 4.4 and are left as an exercise to the 
reader. 

Of the fOUf inverse kinematics solutions of the arm, three were found to 
lead to link interferences with the aid of RVS, the package for robot vi
sualization developed at McGill University. Hence, only one such solution 
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FIGURE 9.1. Joint trajectories for a Fanuc 8-300. 

is physically possible. This solution, along with one of the two wrist solu
tions, is plotted in Fig. 9.1, with Figs. 9.2 and 9.3 showing, respectively, 
the corresponding joint rates and joint accelerations. 

Note that the maxima and minima of the joint-variables occur at in
stants where the corresponding joint rates vanish. Likewise, the maxima 
and minima of joint rates occur at instants where the associated joint ac
celerations vanish, thereby verifying that the computed results are compat
ible. A more detailed verification can be done by numerical differentiation 
of the joint-variable time-histories. 

Example 9.3.2 (Planning of an arc-welding operation) A spherical reser
voir of radius R is to be arc-welded to a cylindrical pipe of radius r, with 
the axis of the cylinder located a distance d from the center of the sphere, 
alt elements of the cylinder piercing the sphere, i.e., d+r ::; R, as shown in 
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FIGURE 9.2. Joint velocities for a Fanuc 8-300. 

. , , • 10 

. , , . 10 

Fig. 9.4. Note that two intersection curves are geometrically possible, but 
the welding will take place only along the upper curve. M oreover, the weld
ing electrode is to traverse the intersection curve, while the tool carrying 
the electrode is to keep a constant orientation with respect to that curve. In 
the coordinate frame shown in Fig. 9.4, find an expression for the rotation 
matrix defining the orientation of the end-effector, to which the electrode 
is rigidly attached. 

Solution: Note that the X axis of the coordinate frame indicated in Fig. 9.4 
intersects the A axis of the cylinder, this axis being parallel to the Z axis. 
Moreover, we define cp as the angle shown in Fig 9.4b. Now, the x and y 
coordinates of an arbitrary point of the intersection curve are given by 

x=d+rcoscp (9.36a) 
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FIGURE 9.3. Joint aceelerations far a Fanue 8-300. 

y = rsincp (9.36b) 

Further, in order to find the remaining z coordinate, we use the equation 
of the sphere, S, namely, 

If we substitute the x and y coordinates of the intersection curve in the 
above equation and then solve for the z coordinatein terms of cp, we obtain 

z = ±VR2 - r2 - d2 - 2drcoscp (9.36c) 

In the above relation, the plus and minus signs correspond to the upper 
and lower portions of the intersection curve, respectively. Since we are 
interested in only the upper intersection, we will take only the positive 
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FIGURE 9.4. Intersection curve between a spherical reservoir and a cylindrical 
pipe. 

sign in the above relation. Furthermore, we define 

d == )..r, R == f.Lr 

where ).. and f.L are nondimensional constants. Moreover, let 

p2 == f.L2 _)..2 - I 

. I 
'(J == -;:;==== v' p2 - 2)" cos '(J 

Then the position vector r of any point on the intersection curve can be 
expressed in the form 

r = r [).. :~;'{Jl 
I/rP 

(9.37) 

Now, upon differentiation of r with respect to '(J, we obtain 

[ 
- sin'{J 1 

r'('{J) = r ~0~'{J 
)..'{JSlll'{J 

(9.38a) 

[ 
- cOS'{J 1 "( ) . r '{J = r - Slll'{J 

)..rpcoS'{J- ()..2 sin2 '{J)rp3 
(9.38b) 

where we have used the relation 

rp'('{J) = -()..sin'{J)rp3 
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In addition, using eqs.(9.38a) and (9.38b), we derive the items needed to 
compute the Frenet-Serret triad, from which we will derive the required 
orientation matrix, i.e., 

[
>.r.p - >.2r.p3 cosepsin2 ep] 

r' ( ep) x r" ( ep) = r2 - >.2 r.p: sin 3 ep 

Ilr'(ep)11 = rG(ep) 

Ilr'(ep) x r"(rp)11 = r 2r.p3JD(rp) 

with functions D(rp) and G(ep) defined as 

(9.39a) 

(9.39b) 

(9.39c) 

D == p4 >.2 + >.4 + p6 _ 6p2 >.(>.2 + p2) cos rp + 6>.2(>.2 + 2p2) cos2 rp 

+ 2>.3(p2 _ 4) cos3 rp - 4>.4 cos4 ep (9.39d) 

(9.3ge) 

Now et, eb, and en are obtained as 

- r' ( rp ) 1 [- sin ep ] 
et = Ilr'( )11 = G ~o~rp 

rp >.rp sm rp 
(9.40a) 

'() "() 1 Arp - A rp cosepsm ep _ r rp x r ep _ >.2"3 . 3 [ 

\ " \ 2 "3 . 2 ] 

eb = Ilr'(rp) x r"(rp)11 - r.p3.JJ5 - ep 1 sm rp (9.40b) 

(9.40c) 

where en has been calculated as en = eb x et. 
The orthogonal matrix defining the orientation of the end-effector can 

now be readily computed as 

for we have all the necessary expressions. Note, however, that these expres
sions allow us to find Q for any value of rp, but we do not have, as yet, an 
expression of the form rp(t) that would allow us to obtain Q(t). Such an 
expression is derived in Example 9.5.I. 

Example 9.3.3 (Calculation oftorsion, curvature, and Darboux vector) We 
refer here to the intersection curve of Example 9.3.2, for which we want to 
find expressions for its curvature, torsion, and Darboux vector. 

Solution: We can use directly the expressions derived above, eqs.(9.28a & 
b), to obtain the curvature and torsion in terms of derivatives with respect 
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to parameter cp. With these expressions and those for the Frenet-Serret 
triad, the Darboux vector would follow. However, we can take shortcuts, 
for we already have expressions for the Frenet-Serret triad, if we express 
the curvature and torsion in terms of this triad and its derivatives with 
respect to cp, as we explain below. Indeed, from the Frenet-Serret relations, 
eqs.(9.2b), we can express the curvature and torsion in the forms 

K, = e~(s) . en 

T = -e~(s) . en 

(9.4la) 

(9.4lb) 

and hence, all we need now are the derivatives of the tangent and normal 
vectors with respect to s. These are readily derived using relation (9.26a), 
Le., 

(9.42a) 

(9.42b) 

Now, in order to differentiate the Frenet-Serret triad with respect to 
cp, we first note, from eqs.(9.40a-c), that these three express ions are vector 
rational functions, and hence, their derivatives with respect to cp are derived 
by applying eq.(9.30b), thereby obtaining 

e~(cp) = ~[n~(cp) - etG'(cp)] (9.43) 

'( ) 1 {'() [3'2"() D'(CP)]} eb cp = t.j;3v'D nb cp - eb cp cp cp - 2v'D (9.44) 

where nt and nb are the numerators of the vector rational expressions of et 
and eb, respectively, given in eq.(9.40a). Below we calculate the foregoing 
derivatives with respect to cp: 

(ji == t.j;'(cp) 

D' (cp) = 6p2.x(.x2 + p4) sin cp - 12.x2 (.x2 + 2p2) cos cp sin cp 

- 6.x3(p2 - 4) cos2 cpsincp - l6.x4 cos3 cpsincp 
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and Ilr'(cp)11 was already calculated in Example 9.3.2. 
If we now substitute all the foregoing expressions into eqs.(9.42a & b), 

we obtain, after intensive simplification, 

v'J5rj;3 
K, = G3 r 

__ 3>..2rj;Esincp 
T - rDG2 

with function E( cp) defined, in turn, as 

E(cp) == :4 [_>..3rj;4 sin4 cp + >..2rj;2 sin2 cp(>..coscp - 1) + coscp] 
cp 

(9.45a) 

(9.45b) 

(9.46) 

With the foregoing expressions for et, eb, T, and K" computing the Darboux 
vector of the intersection curve reduces to a routine substitution of the 
foregoing expressions into eq.(9.13). 

9.4 Parametrie Splines in Trajectory Planning 

Sometimes the path to be followed by the tip of the end-effector is given 
only as a discrete set of sampled points {Pi}{\" This is the case, for example, 
if the path is the intersection of two warped surfaces, as in the arc-welding 
of two plates of the hull of a vessel or the spot-welding of two sheets of the 
fuselage of an airplane. In these instances, the coordinates of the sampled 
points are either calculated numerieally via nonlinear-equation solving or 
estimated using a vision system. In either case, it is clear that only point 
coordinates are available, while trajectory planning calls for information on 
derivatives of the position vector of points along the path with respect to the 
are length. These derivatives can be estimated via a suitable interpolation 
of the given coordinates. Various interpolation schemes are available (Foley 
and Van Dam, 1982; Hoschek and Lasser, 1992), the most widely accepted 
ones being based on spline functions, which were introduced in Section 5.6. 
The splines introduced therein are applicable whenever a junction, not a 
geometrie curve, is to be interpolated. However, in trajectory planning, 
geometrie curves in three-dimensional space come into play, and hence, 
those splines, termed nonparametric, are no longer applicable. What we 
need here are parametric splines, as described below. 

Although parametrie splines, in turn, can be of various types (Dier
ekx, 1993), we will focus here on cubic parametrie splines because of their 
simplicity. 

Let Pi(Xi, Yi, Zi), for i = 1, ... ,N, be the set of sampled points on the 
path to be traced by the tip of the end-effector, {pd{\' being the set of 
corresponding position vectors. Our purpose in this section is to produce 
a smooth curve r that passes through {Pd{\' and that has a continuous 
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Frenet-Serret triad. To this end, we will resort to the expressions derived 
in Section 9.3, in terms of a parameter a, which we will define presently. 

We first introduce a few definitions: Let the kth derivative of the position 
vector p of an arbitrary point P of r with respect to a, evaluated at Pi, 
be denoted by p~k), its components being denüted correspondingly by x~k), 
y;k), and z;k). Next, the coordinates of P are expressed as piecewise cubic 
polynomials of a, namely, 

x(a) = Axi(a - ai)3 + Bxi(a - ai)2 + Cxi(a - ai) + D xi (9.47a) 

y(a) = Ayi(a - ai)3 + Byi(a - ai)2 + Cyi(a - ai) + D yi (9.47b) 

z(a) = Azi(a - ai)3 + Bzi(a - ai)2 + Czi(a - ai) + D zi (9.47c) 

for a real parameter a, such that ai ::; a ::; ai+l and i = 1, ... ,N - 1, with 
ai defined as 

al = 0, ai+! == ai + .6.ai, .6.ai == J .6.x; + .6.y'f + .6.z'f (9.47d) 

.6.Xi == Xi+! - Xi, .6.Yi == Yi+l - Yi, .6.zi == Zi+l - Zi (9.47e) 

and hence, .6.ai represents the length of the chord subtended by the arc 
of path between Pi and Pi+l. Likewise, adenotes a path length measured 
along the spatial polygonal joining the N points {Pd]". Thus, the closer 
the aforementioned points, the closer the approximation of .6.ai to the arc 
length between these two points, and hence, the better the approximations 
of the curve properties. 

The foregoing spline coefficients Axi , A yi , ... , D zi, for i = 1, ... , N - 1, 
are determined as explained below. Let us define the N -dimensional vectors 

x == [Xl, ... ,XN]T, 

y== [Yl, ... ,YN]T, 

Z == [Zl, ... , ZN]T, 

" - [ " " ]T X = Xl' ... 'XN 

Y" = [Y" Y" ] T - 1'···' N 

" - [ " " ]T Z = Zl' ... ,ZN 

(9.48a) 

(9.48b) 

(9.48c) 

The relationships between x, y, and z and their counterparts x", y", and 
z" are the same as those found for nonparametric splines in eq.(5.58a), 
namely, 

Ax" = 6Cx 

Ay" = 6Cy 

Az" = 6Cz 

(9.49a) 

(9.49b) 

(9.49c) 

which are express ions similar to those of eq.(5.58a), except that the A 
and C matrices appearing in eq.(9.49b) are now themselves functions of 
the coordinates of the supporting points (SP) of the spline. In fact, the 
(N - 2) x N matrices A and C are now defined exactly as in eqs.(5.58b & 
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c), repeated below for quick reference: 

[0, 2al,2 a2 0 0 0 

A~ ~ 
a2 2a2,3 a3 0 0 

(9.49d) 

0 aN'" 2aN"',N" aN" 0 
0 0 aN" 2aN",N' aN' 

and 

ßl -ßl,2 ß2 0 0 

11 
0 ß2 -ß2,3 ß3 0 

C= (9.4ge) 

0 0 ßN'" -ßN'",NII ßN" 
0 0 0 ßN" -ßNII,NI 

where ak and ßk are now defined correspondingly, i.e., for i,j, k = 1, ... , N', 

ak = D.ak, ai,j = ai + aj, ßk = l/ak, ßi,j = ßi + ßj (9.50) 

while N', N", and N'" are defined as in eq.(5.58f), i.e., as 

N' == N - 1, N" == N - 2, N'" == N - 3 (9.51 ) 

Note that the spline p(a) is fully determined once its coefficients are 
known. These are computed exactly as their counterparts for non para
metric splines, namely, as in eqs.(5.55a-e). Obviously, different from the 
aforementioned formulas, the coefficients of the parametric spline pertain 
to three coordinates, and hence, three sets of such coefficients need be com
puted in this case. In order to simplify matters, we introduce the vectors 
below: 

[AXk] 
ak == A yk , 

A zk 

(9.52) 

and thus, the position vector of an arbitrary point P on the parametric 
spline takes on the form 

p(a) = ak(a - ak)3 + bk(a - ak)2 + ck(a - ak) + dk, k = 1, ... ,N-1 
(9.53a) 

in the interval ak ::; a ::; ak+l' The counterpart set of eqs.(5.55a-e) is then 

1 ("") (9 53b) ak = 6 D.ak PHI - Pk . 

1 " 
b k = '2 Pk 

D.Pk 1 A (" ") 
Ck = D.ak - 6" uak PHI + 2Pk 

d k = Pk 

D.Pk == PHI - Pk 

(9.53c) 

(9.53d) 

(9.53e) 

(9.53f) 
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where vectors Pk and p"kare defined as 

p% == y~ [
XII] 

Zll 
k 

(9.54) 

Note that since pis piecewise cubic in 17, p! is piecewise quadratic, whereas 
pli is piecewise linear in the same argument, p'" being piecewise constantj 
higher-order derivatives vanish. Properly speaking, however, the piecewise 
constancy of pli! causes the fourth-order derivative to be discontinuous at 
the SP, and consequently, all higher-order derivatives are equally discontin
uous at those points. In practice, these discontinuities are smoothed out by 
the inertia of the links and the motors, if the SP are chosen elose enough. 
Obviously, higher-order continuity can be achieved if higher-order splines, 
e.g., quintic splines, are used instead. For the sake of conciseness, these 
splines are not discussed here, the interested reader being directed to the 
specialized literat ure (Dierckx, 1993). 

Further , the N x 3 matrices P and pli are defined as 

(9.55) 

which allows us to rewrite eqs.(9.49b) in matrix form as 

AP"=6CP (9.56) 

It is now apparent that the spline coefficients ak, ... , d k can be calculated 
once vectors p% are available. These vectors can be computed via matrix 
pli as the solution to eq.(9.56). However, finding this solution requires 
inverting the (N - 2) x N matrix A, which is rectangular and hence cannot 
be inverted, properly speaking. We thus have an underdetermined system 
of linear equations, and further conditions are needed in order to render it 
determined. Such conditions are those defining the type of spline at hand. 
For example, elosed paths call naturally for periodic splines, while open 
paths call for other types such as natural splines. The conditions imposed 
on periodic parametric splines are listed below: 

(9.57a) 

On the other hand, natural parametric splines are obtained under the 
conditions 

(9.57b) 

Thus, if a periodic parametric spline is required, then vectors p N and p'f.v 
can be deleted from matrices P and pli, respectively, these then becoming 
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(N - 1) X 3 matrices, namely, 

[ 
(p7V 1 (p")T 

p" == : 

( " T) PN-1 

(9.58) 

Moreover, the first-derivative condition of eq.(9.57a) is added to the N -
2 continuity conditions of eq.(5.56), thereby obtaining N - 1 equations 
of this form. Consequently, A becomes an (N - 1) x (N - 1) matrix. 
Correspondingly, C also becomes an (N - 1) x (N - 1) matrix, Le., 

201,N' 01 0 0 ON' 
01 201,2 02 0 0 
0 02 202,3 03 0 

A== (9.59a) 

0 0 aN'" 20N'I,N" °N" 
ON' 0 0 °N" 20NII,N' 

and 

-ß1,N' ßl 0 0 ßN' 
ß1 -ß1,2 ß2 0 0 
0 ß2 -ß2,3 ß3 0 

C== (9.59b) 

0 0 ßN'II -ßN"',NII ßN" 
ßN' 0 0 ßN" -ßNII,NI 

Since A is nonsingular, eq.(9.56) can be solved for P", namely, 

p" = 6A -1CP (9.60) 

thereby computing all vectors {pDf- 1 , from which p'Jv can be readily 
obtained. Hence, the spline coefficients follow. 

Likewise, if natural parametrie splines are used, then P" becomes an 
(N - 2) x 3 matrix, while A, consequently, becomes an (N - 2) x (N - 2) 

matrix, as given in eq.(5.59). 

Example 9.4.1 (Spline-approximation of a warped path) For the numer
ical values R = 0.6 m, r = 0.15 m, and d = 0.3 m, determine the periodic 
parametric cubic spline approximating the intersection of the sphere and 
the cylinder of Fig. 9.4, with 12 equally spaced supporting points along the 
cylindrical coordinate <p, i.e., with supporting points distributed along the 
intersection curve at intervals D..<p = 30°. Using the spline, find values 
of the tangent, normal, and binormal vectors of the curve, as well as the 
rotation matrix Q. In order to quantify the error in this approximation, 
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TABLE 9.2. The Cartesian Coordinates of the Supporting Points 

'P 0° 30° 60° 90° 120° 150° 
X 0.45 0.429904 0.375 0.3 0.225 0.170096 
y 0 0.075 0.129904 0.15 0.129904 0.075 
z 0.396863 0.411774 0.45 0.497494 0.540833 0.570475 

'P 180° 210° 240° 270° 300° 330° 
X 0.15 0.170096 0.225 0.3 0.375 0.429904 
y 0 -0.075 -0.129904 -0.15 -0.129904 -0.075 
z 0.580948 0.570475 0.540833 0.497494 0.45 0.411774 

compare (i) the components 0/ the two position vectors, the exact and the 
spline-generated ones, while normalizing their differences using the radius 
0/ the cylinder r; and (ii) the Euler-Rodrigues parameters 0/ the exact and 
the spline-approximated rotation matrices. Plot these errors vs. 'P. 

Solution: We use eq.(9.37} to find the Cartesian coordinates of the sup
porting points. The numerical results are given in terms of the components 
of r == [x, y, Z]T in Table 9.2. Note that this table does not include the 
Cartesian-coordinate values at 360° because these are identical with those 
at 0°. 

The four Euler-Rodrigues parameters {riH=o of the rotation matrix are 
most suitably calculated in terms of the linear invariants, i.e., as appearing 
in eq.(2.77). If we let p and r denote the estimates of p and r, respectively, 
then the orientation error is evaluated via the the four differences ßri = 
ri - Ti, for i = 0, ... ,3. The positioning error is computed, in turn, as the 
normalized difference € = (p - p)/r to yield a dimensionless number, its 
components being denoted by €x, €Y' and €z. The aforementioned errors are 
plotted vs. 'P in Figs. 9.5 and 9.6. 

Note that the orientation errors are, roughly, one order of magnitude 
greater than the positioning errors. 

9.5 Continuous-Path Tracking 

When a continuous trajectory is to be tracked with a robot, the joint angles 
have to be calculated along a continuous set of poses of the end-effector. 
In practice, the continuous trajectory is sampled at a discrete set of close
enough poses {Sk}f" along the continuous trajectory. Then in principle, 
an IKP must be solved at each sampled pose. If the manipulator is of the 
decoupled type, these calculations are feasible in a fraction of a millisecond, 
for the solution reduces, in the majority of the cases, to a cascading of 
quadratic equations. In the worst case, the inverse kinematics of a decoupled 
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FIGURE 9.5. Plots of the positioning errors. 

manipulator requires finding all the roots of a quartic equation at each 
sampled pose, but this is still feasible in the same time frame, for the 
four roots of interest can be calculated from formulas. However, if the 
manipulator has an architecture not lending itself to a simple solution and 
requires solving polynomials of a degree higher than four, then finding all 
solutions at each sampie pose may require a few milliseconds, which may 
be too slow in fast operations. Hence, an alternative approach is needed. 

The alternative is to solve the IKP iteratively. That is, if we have the 
value of the vector of joint variables O(tk) and want to find its value at 
tk+l, then we use Algorithm 9.5.1. 

Various procedures are available to find the correction !lO above. The one 
we have found very convenient is based on the Newton-Raphson method 
(Dahlquist and Björck, 1974). In the realm of Newton methods-there are 
several of these, the Newton-Raphson method being only one of this class
the closure equations (4.9a & b) are written in the form 

f(O) = Sd (9.61 ) 
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FIGURE 9.6. Plots of the orientation errors. 

Algorithm 9.5.1 

8 +- 8(tk) 

1 find correction D..8 

if 11 D..8 11 ~ E, then stop; 

else 

go to 1 

where Sd is the 7-dimensional prescribed pose array. We recall here the 
definition of the pose array introduced in Section 3.2 to represent Sd, 
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namely, 

(9.62) 

with q and qo defined, in turn, as a 3-dimensional vector invariant and its 
corresponding scalar, respectively, of the rotation Q. Moreover, p is the 
position vector of the operation point. Therefore, the 7-dimensional vector 
fis defined, correspondingly, as 

(9.63) 

where fv(O) denotes the counterpart of q above, as pertaining to the prod
uct Ql ... Q6 of eq.(4.9a); 10(0) is the counterpart of qo, as pertaining to 
the same product; and fp(O) is the sum al + ... + a6. In principle, any of 
the three types of rotation invariants introduced in Section 3.2 can be used 
in the above formulation. 

Now, eq.(9.61) represents a nonlinear system of seven equations in six 
unknowns. The system is thus overdetermined, but since the four rotational 
equations are consistent, this system should admit an exact solution, even if 
this solution is complex. For example, if p is specified in Sd above as lying 
outside of the manipulator workspace, then no real solution is possible, 
and the solution reported by any iterative procedure capable of handling 
complex solutions will be complex. 

Upon application of a Newton-type method to find a solution of eq.(9.61), 
we assurne that we have an initial guess 00 , and based on this value, we 
generate a sequence 0 1 , •.• , Oi, OHl, ... , until either a convergence or an 
abortion criterion is met. This sequence is generated in the form 

(9.64) 

with 6..0 i calculated from 

(9.65) 

and ~ defined as the Jacobian matrix of f(O) with respect to O. Note that 
by virtue of its definition, ~ is a 7 x 6 matrix. A common misconception in 
the robotics literat ure is to confuse this Jacobian matrix with the Jacobian 
defined by Whitney (1972) and introduced in eq.(4.55a), which maps joint 
rates into the EE twist. The difference between the two Jacobians is es
sential and is made clear in the discussion below. First and foremost, ~ is 
an actual Jacobian matrix, while Whitney's Jacobian, properly speaking, 
is not. In fact, ~ is defined as 

~= 8f 
- 80 (9.66) 



www.manaraa.com

384 9. Trajectory Planning: Continuous-Path Operations 

In order to find <I> in eq.(9.65), we note that by application of the chain 
rule, 

(9.67) 

However, from the definition of f, we have that f is the time-derivative 
of the pose array of the EE, Le., S. Moreover, by virtue of eq.(3.79), this 
time-derivative can be expressed as a linear transformation of the twist t 
of the EE, i.e., 

(9.68a) 

with T defined in Section 3.2 as 

(9.68b) 

where 0 and 0 43 denote the 3 x 3 and the 4 x 3 zero matrices, 1 being the 
3 x 3 identity matrix. Moreover, matrix F takes on various forms, depending 
on the type of rotation representation adopted, as discussed in Section 3.2. 

Moreover, we write the left-hand side of eq.(9.68a) as shown in eq.(9.67) 
and the twist t of the right-hand side of eq.(9.68a) in terms of iJ, as 
expressed in eq.(4.54), thereby obtaining 

<I>iJ == TJiJ (9.69) 

which is a relation valid for any value of iJ. As a consequence, then, 

<I> = TJ (9.70) 

whence the relation between the two Jacobians is apparent. Note that 
eq.(9.68a) allows us to write 

(9.71) 

Furthermore, if we denote by td the prescribed value of the twist of the 
EE, then we have 

(9.72) 

Upon equating the right-hand sides of eqs.(9.71) and (9.72), we obtain 

(9.73) 

If linear invariants are used to represent the rotation, then T becomes 
rank-deficient if and only if the angle of the rotation becomes 7r (Tandirci, 
Angeles, and Darcovich, 1994); otherwise, T is always of full rank, and 
eq.(9.73) leads to 

(9.74) 



www.manaraa.com

9.5 Continuous-Path Tracking 385 

which is exactly the same as eq.(4.54). Now we multiply both sides of the 
foregoing equation by tlt, thereby obtaining 

(9.75) 

All we need now is, apparently, the product in the right-hand side of the 
above equation, namely, 

t tlt = [~tlt] = [Wtlt] 
d ptlt tlp (9.76) 

The product wtlt is found below: First and foremost, it is common practice 
in the realm of Newton methods to assurne that a good enough approx
imation to the root sought is available, and hence, tl(J is "small." That 
is, we assurne that Iltl(J11 is small, where 11 . 11 denotes any vector norm. 
Moreover, we use the end-effector pose at t = tk as a reference to describe 
the desired pose at t = tk+l, the rotation sought~that takes the EE to its 
desired attitude~being assumed ab out an axis parallel to ed and through 
an as-yet unknown angle tlc/>. Thus, the rotation needed to take the end
effector to the desired pose is assumed to involve a small angle of rotation 
tlc/> about an axis parallel to the unit vector ed. Here, ed is the unit vector 
parallel to the axis of the rotation that took the end-effector from the fixed 
frame F 1 , i.e., the frame attached to the robot base, to the attitude it has 
at t = tk. 

Henceforth, we will use linear invariants to represent rotations. The linear 
invariants of this rotation are q = ed sin tlc/> and qo = cos tlc/>. Moreover, 
the natural invariants of the rotation matrix at t = tk are ed and c/> = O. 
We now have, from eqs.(3.78a & c), 

(9.77) 

where L is computed at t = tk, i.e., 

(9.78) 

whence 
wtlt = ed sin tlc/> (9.79) 

In summary, then, the correction tl(J is computed from 

Jtl(J = tlt (9.80) 

with tlt defined as 

(9.81 ) 

and tlp defined, in turn, as the difference between the prescribed value Pd 
of the position vector of the operation point and its value at the current 
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Algorithm 9.5.2 

1 ö,cjJ ~ cjJ-cjJd 

ö,P ~ P-Pd 

ö,t ~ [(Sin~:)ed ] 

Ö,O ~ J- 1dt 

if 11 Ö,O 11 ::; t, then stop; 

else 

s ~ f(O) 

go to 1 

iteration. Thus, the numerical path-tracking scheme consists essentially of 
eqs.(9.80) and (9.81), as first proposed by Pieper (1968). We thus have 
Algorithm 9.5.2. 

When implementing the foregoing procedure, we want to save processing 
time; hence, we aim at fast computations. The computation of the cor
rection Ö,O involves only linear-equation solving, which was discussed at 
length in Chapter 4 and need not be discussed further here. The only item 
that still needs some discussion is the calculation of the vector norm 11 Ö,O 11. 
Since any norm can be used here, we can choose the norm that is fastest to 
compute, namely, the maximum norm, also known as the Chebyshev norm, 
represented as IIÖ,Olloo, and defined as 

(9.82) 

Note that this norm only requires comparisons and no floating-point op
erations. The Euclidean norm, on the contrary, requires n multiplications, 
n - 1 additions, and one square root, for an n-dimensional vector. 

Example 9.5.1 (Path-tracking for arc-welding) Here we want to weld the 
sphere and the eylinder of Example 9.3.2 using a robot for are welding, 
e.g., a Fanue Are Mate, whose Denavit-Hartenberg parameters are listed in 
Table 4.2. Furthermore, the welding seam to be traeked is plaeed well within 
the workspaee of the manipulator. A loeation found quite suitable for this 
task was obtained with the aid of RVS, our Robot Visualization System. 
This loeation requires that the eoordinate frame Fe of Fig. 9.4 have its 
axes parallel pairwise to those of the robot base, F 1 . The latter is defined 
aeeording to the Denavit-Hartenberg notation, and so Zl eoineides with the 
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axis of the first revolute; it is, moreover, directed upwards. The position 
found for the origin Oe of Fe, of position vector 0, is given in F l as 

[X] [-1.0] 
loh ==; ~~51 m 

Find the time-histories of all the joint variables that will per form the desired 
operation with the tip of the electrode traversing the intersection curve at 
the constant speed of Vo = 0.1 m/s. Furthermore, plot the variation of the 
condition number of the Jacobian matrix along the path. 

Solution: The robot at hand was studied in Subsection 8.2.3, where it was 
found not to be of the decoupled type. In fact, this robot does not admit a 
closed-form inverse kinematics solution, and hence, the foregoing iterative 
procedure is to be used. 

At the outset, we calculate all inverse kinematics solutions at the pose 
corresponding to cp = ° using the contour intersection approach of Subsec
tion 8.2.1. This pose is defined by the orthogonal matrix Q and the position 
vector p given below: 

[
0.60°30 °1 

[ Q h == [eb et e n J = 
0.7977 ° 

-0.7977] 

° , 
0.6030 

[
-0.5500] 

[p h = -0.100 m 
0.8969 

with both Q and p given in robot-base coordinates. The contours for the 
above pose, which were obtained using the procedure of Subsection 8.2.1, 
are shown in Fig. 9.7, the eight solutions obtained being summarized in 
Table 9.3, which includes the condition number of the Jacobian, K(J), of 
each solution. Note that the calculation of K(J) required computing the 
characteristic length of the robot, as explained in Section 4.9. This length, 
as calculated in that section, turned out to be L = 0.3573 m. 

Now, we have eight solutions at our disposal, from which we must choose 
one for path-tracking. In the absence of any criterion to single out one 
specific solution, we can pick the solution with the lowest condition number. 
If we do this, we end up with solution 1 in Table 9.3. However, when we 
attempted to track the given path with this solution, it turned out that 
this solution encountered a singularity and was hence discarded. Of the 
seven remaining solutions, solution 5 has the lowest condition number; this 
solution led to a singularity-free trajectory. 

Once the appropriate solution is chosen, the trajectory can be tracked 
with the aid of Algorithm 9.5.2. Here, we need a discrete set of poses at 
equal time-intervals. Note that we can produce such a set at equal intervals 
of angle cp because we have expressions for the pose variables in terms of 
this angle. In order to obtain this set at equal time-intervals, then, we need 
angle cp as a function of time, i.e., cp(t). In the sequel, we will also need the 
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FIGURE 9.7. Contour solutions of the Fanue Are Mate robot at the given EE 
pose. 

TABLE 9.3. Inverse Kinematies Solutions of the Fanue Are Mate Robot for the 
Given EE Pose. 

i I\:(J) lh (h (h 
1 4.74 19.9039° 124.909° -176.484° 
2 4.85 -3.6664° 124.723° -173.071° 
3 11.12 -154.951° -67.5689° -135.549° 
4 6.31 -176.328° -63.4487° -129.817° 
5 4.79 -176.341° 75.1632° -76.6692° 
6 5.20 -153.567° 73.4546° -72.5407° 
7 8.68 -3.6362° -129.644° -32.9672° 
8 9.94 18.9031° -131.096° -26.8084° 

i ()4 ()5 ()6 

1 16.1379° -102.29° -15.8409° 
2 177.019° 101.19° -177.208° 
3 141.716° 146.966° 17.754° 
4 -4.5893° -140.319° -178.681° 
5 3.7343° 51.4104° -179.877° 
6 -153.868° -53.7328° -0.5046° 
7 -175.011° -144.428° 178.133° 
8 -28.6793° 147.417° 13.0786° 
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time T needed to eomplete the task. Now, sinee the speed of the electrode 
tip is eonstant and equal to vo, the time T is readily obtained by dividing 
the totallength l of the eurve by Vo. The length of the eurve, in turn, ean 
be eomputed as s(27f), where funetion s(cp) denotes the are length as a 
function of angle cp, i.e., 

s(cp) = 1'P Ilr'(cp)lldcp 

We thus obtain, by numerieal quadrature, 

Henee, the total time is 

l == s(27f) = 1.0257 m 

l 
T == - = 10.257 s 

Vo 

Now, in order to obtain cp(t), we first ealculate s as 

. ds ds dcp . ds 
s == dt = dcp dt = cp dcp 

(9.83) 

(9.84a) 

Furthermore, we note that ds/dcp = Ilr'(cp)ll, whieh allows us to write s as 

s == epllr'(cp)11 

Moreover, IIr'(cp)II was found in eq.(9.39b) to be 

IIr'(cp)II = rG(cp) 

8 thus becoming 
s = rGep (9.84b) 

Furthermore, we reeall the expression derived for G(cp) in eq.(9.3ge). This 
expression, along with the constaney eondition on 8, i.e., 8 = vo, leads to 

where r is the radius of the eylinder. Upon solving for ep from the above 
equation, we obtain 

. Vo 
cp= -

r 

p2 - 2-Xeoscp 

p2 _ 2-X eos cp + -X2 sin2 cp 

which is a nonlinear first-order differential equation for cp(t). Its initial value 
ean be assigned as cp(O) = 0, thereby formulating a nonlinear first-order 
initial-value problem. The numerieal solution of the foregoing problem is 
nowadays routine work, which ean be handled with suitable software, e.g., 
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FIGURE 9.8. Plot of cp vs. nondimensional time. 

Matlab (Etter, 1993) or IMSL. Upon solving this equation, a data file is 
produced that contains the time-history of 'P. The plot of 'P vs. nondi
mensional time is displayed in Fig. 9.8a. Since the variations of c.p(t) are 
relatively small, this plot provides little information on the time-history of 
interest. A more informative plot, that of cj;(t) , is included in Fig. 9.8b for 
this reason. 

With 'P(t) known as a function of time, we can now specify the pose of 
the end-effector, i.e., p and Q, as functions of time. 

The whole trajectory was tracked with the robot at hand using the algo
rithm outlined in this section. With the aid of this algorithm, we produced 
the plots of Fig. 9.9. Also, the time-history of the condition number of the 
manipulator Jacobian was computed and plotted in Fig. 9.10. Apparently, 
the condition number of the Jacobian remains within the same order of 
magnitude throughout the whole operation, below 10, thereby showing that 
the manipulator remains far enough from singularities during this task
the condition number becomes very large when a singularity is approached, 
becoming unbounded at singularities. 

A rendering of the welding seam with the Frenet-Serret triad at a sample 
of points is displayed in Fig. 9.11. It is noteworthy that the torsion of the 
path is manifested in this figure by virtue of the inclination of the Z axis, 
which changes from point to point. In a planar curve, this axis would remain 
at a fixed orient at ion while traversing the curve. 
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FIGURE 9.9. Time-histories of the joint variables (in degrees) of the Fanue Are 
Mate robot used to track a warped eurve for are-welding vs. nondimensional time. 
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FIGURE 9.10. Time-history of the eondition number of the Jaeobian matrix 
during an are-welding operation vs. nondimensional time. 
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10 
Dynamics of Complex Robotic 
Mechanical Systems 

10.1 Introduction 

The subjeet of this ehapter is the dynamies of the elass of robotic meehan
ieal systems introdueed in Chpater 8 under the generie name of complex. 
However, notiee that this elass eomprises serial manipulators not allowing 
a deeoupling of the orientation from the positioning tasks. For purposes of 
dynamies, this deeoupling is irrelevant and henee, was not a eondition in 
the study of the dynamies of serial manipulators in Chapter 6. Thus, serial 
manipulators need not be furt her studied here, the foeus being on par
allel manipulators and rolling robots. The dynamies of walking maehines 
and multifingered hands involves special features that render these sys
tems more elaborate from the dynamics viewpoint, namely, a time-varying 
topology. What this means is that these systems inelude kinematie loops 
that open when a leg takes off or when a finger releases an object and open 
ehains that elose when a leg touehes ground or when a finger makes eontaet 
with an objeet. The implieation here is that the degree of freedom of these 
systems is time-varying. The derivation of such a mathematieal model is 
outlined in (Pfeiffer, Eltse, and Weidemann, 1995). 

The degree of freedom (dof) of the meehanieal systems studied here is 
thus eonstant. Now, the two kinds of systems studied here pertain to very 
different types, for parallel manipulators fall into the realm of holonomic, 
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while rolling robots into that of nonholonomic, mechanical systems. In or
der to better understand this essential difference between these two types 
of systems, we give below a summary of the classification of mechanical 
systems at large. 

10.2 Classification of Robotic Mechanical Systems 
with Regard to Dynamics 

Because robotic mechanical systems are a class of general mechanical sys
tems, a classification of the latter will help us focus on the systems moti
vating this study. Mechanical systems can be classified according to vari
ous criteria, the most common one being based on the type of constraints 
to which these systems are subjected. In this context we find holonomic 
vs. nonholonomic and scleronomic vs. rheonomic constraints. Holonomic 
constraints are those that are expressed either as a system of algebraic 
equations in displacement variables, whether angular or translational, not 
involving any velo city variables, or as a system of equations in velo city vari
ables that nevertheless can be integrated as a whole to produce a system 
of equations of the first type. Note that it is not necessary that every sin
gle scalar equation of velocity constraints be integrable; rather, the whole 
system must be integrable for the system of velo city constraints to lead to 
a system of displacement constraints. If the system of velo city constraints 
is not integrable, the constraints are said to be nonholonomic. Moreover, 
if a mechanical system is subject only to holonomic constraints, it is said 
to be holonomic; otherwise, it is nonholonomic. Manipulators composed 
of revolute and prismatic pairs are examples of holonomic systems, while 
wheeled robots are usually nonholonomic systems. On the other hand, if a 
mechanical system is subject to constraints that are not explicit functions 
of time, these constraints are termed scleronomic, while if the constraints 
are explicit functions of time, they are termed rheonomic. For our purposes, 
however, this distinction is irrelevant. 

In order to understand better one more classification of mechanical sys
tems, we recall the concepts of generalized coordinate and generalized speed 
that were introduced in Subsection 6.3.2. The generalized coordinates of a 
mechanical system are all those displacement variables, whether rotational 
or translational, that determine uniquely a configuration of the system. 
Note that the set of generalized coordinates of a system is not unique. 
Moreover, various sets of generalized coordinates of a mechanical system 
need not have the same number of elements, but there is a minimum num
ber below which the set of generalized coordinates cannot define the con
figuration of the system. This minimum number corresponds, in the case of 
holonomic systems, to the degree of freedom of the system. Serial and paral
lel manipulators coupled only by revolute or prismatic pairs are holonomic, 
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their joint variables, grouped in vector 8, playing the role of generalized 
coordinates, while their joint rates, grouped in vector 8, in turn, play the 
role of generalized speeds. Note that in the case of parallel manipulators, 
not all joint variables are independent generalized coordinates. In the case 
of nonholonomic systems, on the other hand, the number of generalized co
ordinates needed to fully specify their configuration exceeds their degree of 
freedom by virtue of the lack of integrability of their kinematic constraints. 
This concept is best illustrated with the aid of examples, which are included 
in Section 10.5. Time-derivatives of the generalized coordinates, or linear 
combinations thereof, are termed the generalized speeds of the system. If 
the kinetic energy of a mechanical system is zero when all its generalized 
speeds are set equal to zero, the system is said to be catastatic. If, on the 
contrary, the kinetic energy of the system is nonzero even if all the gener
alized speeds are set equal to zero, the system is said to be acatastatic. All 
the systems that we will study in this chapter are catastatic. A light robot 
mounted on a heavy noninertial base that undergoes a controlled motion is 
an example of an acatastatic system, for the motion of the base can be as
sumed to be insensitive to the dynamics of the robot; however, the motion 
of the base does affect the dynamics of the robot. 

Another criterion used in classifying mechanical systems, which pertains 
specifically to robotic mechanical systems, is based on the type of actua
tion. In general, a system needs at least as many independent actuators 
as degrees of freedom. However, instances arise in which the number of 
actuators is greater than the degree of freedom of the system. In these 
instances, we speak of redundantly-actuated systems. In view of the funda
mental character of this book, we will not study redundant actuation here; 
we will thus assurne that the number of independent actuators equals the 
degree of freedom of the system. 

The main results of this chapter are applicable to robotic mechanical 
systems at large. For brevity, we will frequently refer to the objects of our 
study simply as systems. 

10.3 The Structure of the Dynamics Models of 
Holonomic Systems 

We saw in Section 6.6 that the mathematical model of a manipulator of the 
serial type contains basically three terms, namely, one linear in the joint 
accelerations, one that is quadratic in the joint rates, and one that arises 
from the environment, Le., from actuators, dissipation, and potential fields 
such as gravity. We show in this section that in fact, the essential structure 
of this model still holds in the case of more general mechanical systems, if 
we regard the rates of the actuated joints as the independent generalized 
speeds of the system. 
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First, we will assurne that the mechanical system at hand is composed 
of r rigid bodies and its degree of freedom is n. Henceforth, we assurne 
that these bodies are coupled in such a way that they may form kinematic 
loops; for this reason, such systems contain some joints that are not active, 
Le., that are not driven by any actuator. For the sake of simplicity, the 
vector of joint rates that we will consider contains only those rates that are 
associated with actuated joints. The kinetic energy of the system at hand 
then takes the form of eq.(6.16), and all other definitions of Subsection 6.3.1 
hold. 

Upon differentiation of eq.(6.16) with respect to the vector of actuated 
joint rates, we obtain 

We now recall the twist-rate relation of eq.(6.55), which leads to 

Moreover, from eq.(6.14), 

~ =T 
ÖO 

Öl!' =Mö~ =MT 
öO öO 

which follows because M is rate-independent. 

(10.1) 

(10.2) 

(10.3) 

Furthermore, upon substitution of eqs.(1O.2) and (10.3) into eq.(1O.1), 
we obtain 

öT _ TT (10.4) öB - p, 

Hence, 

(10.5) 

Further, upon substitution of eqs.(6.14) and (6.15) into eq.(1O.5), we 
derive a more useful expression for the foregoing derivative, namely, 

(10.6) 

or in terms of independent speeds and accelerations, 

(10.7) 

thereby completing the computation of the first term of the left-hand side 
of the Euler-Lagrange equations of the system, eq.(6.6). Because the second 
term is more elusive, it is computed in two steps. First, we find an expression 
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for the time-rate of change ofthe kinetic energy, as given by eq.(6.16), which 
leads to 

. 1 T· 1 T 
T=-IL t+-t j.t 

2 2 
where t is derived upon differentiation of the general relation 

Le., 

while j.t is derived upon differentiation of expression (6.14), i.e., 

j.t = Mt + WMt == MTÖ + MTÖ + WMTÖ 

(10.8) 

(10.9) 

(10.10) 

Upon substitution of expressions (10.9) and (10.10) into eq.(10.8), we ob
tain 

t = tTMTÖ + tTMi'Ö + ~tTWMTÖ 
However, the third term of the above expression vanishes because as we will 
show below, the product Wt vanishes. Indeed, we can write, in general, 

(10.11) 

o 
where 0 denotes the 6 x 6 zero matrix. Now, if we recall eq.(3.146), each 
of the 6-dimensional blocks Witi of Wt vanishes. Therefore, t reduces to 

(10.12) 

On the other hand, t can be regarded as a function of 9 and Ö, i.e., as 
t = t(9, Ö). Hence, by application of the chain rule, 

. (8T)T. (8T)T .. 
T = ö9 9 + öÖ 9 

Upon comparison of eqs.(1O.12) and (10.13), we obtain 

öT = i'TMt = i'TMTÖ 
ö9 

(10.13) 

(10.14) 

We now set out to calculate the right-hand side of the Euler-Lagrange 
equations. First, the partial derivative of the power supplied to the system 
by driving forces with respect to the vector of independent generalized 
speeds takes the form 

öl! = !-(tTWA) = (Ö~)T w A 
ö9 ö9 ö9 

(10.15) 
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Upon substitution of eq.(1O.2) into eq.(10.14), we obtain 

ßI! = TTwA 
ß8 

(10.16) 

Similarly, under the assumption that a dissipation function is available, 

ß~ =TTwD 
ß8 

(10.17) 

Now, the n x n matrix associated with Ö in eq.(1O.7) is defined as the 
generalized inertia matrix of the system and is denoted by I, i.e., 

(10.18) 

Upon substitution of eqs.(1O.7), (10.14), (10.16), (10.17), and (10.18) 
into the Euler-Lagrange equations, eq.(6.6), the desired dynamics model is 
derived, namely, 

(1O.19a) 

or 
(10.19b) 

It is important to note that the nonworking constraint wrench w C does 
not appear in the Euler-Lagrange equations, which is one of the attrac
tive features of these equations for simulation and control purposes. On 
the other hand, the Newton-Euler equations involve nonworking constraint 
wrenches, which are needed to calculate the design loads acting on each 
link. 

10.4 Dynamics of Parallel Manipulators 

We illustrate the modeling techniques of mechanical systems with kine
matic loops via a class of systems known as parallel manipulators. While 
parallel manipulators can take on a large variety of forms, we focus here on 
those termed platform manipulators, with an architecture similar to that of 
flight simulators. In platform manipulators we can distinguish two special 
links, namely, the base Band the moving pi at form M. Moreover, these 
two links are coupled via six legs, with each leg constituting a six-axis kine
matic chain of the serial type, as shown in Fig. 10.1, whereby a wrench 
w W , represented by a double-headed arrow, acts on M and is applied at 
GM, the mass center of M. This figure shows the axes ofthe revolutes cou
pling the legs to the two platforms as forming regular polygons. However, 
the modeling discussed below is not restricted to this particular geometry. 
As a matter of fact, these axes need not even be coplanar. On the other 
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FIGURE 10.1. A platform-type parallel manipulator. 

hand, the architecture of Fig. 10.1 is very general, for it includes more spe
cific types of platform manipulators, such as flight simulators. In these, the 
first three revolute axes stemming from the base platform have intersecting 
axes, thereby giving rise to a spherical kinematic pair, while the upper two 
axes intersect at right angles, thus constituting a universal joint. Moreover, 
the intermediate joint in flight simulators is not arevolute, but rather a 
prismatic pair, which is the actuated joint of the leg. A leg kinematically 
equivalent to that of flight simulators can be obtained from that of the 
manipulator of Fig. 10.1, if the intermediate revolute has an axis perpen
dicular to the line connecting the centers of the spherical and the universal 
joints of the corresponding leg, as shown in Fig. 10.2. In flight simulators, 
the pose of the moving platform is controlled by hydraulic actuators that 
vary the distance between these two centers. In the revolute-coupled equiv
alent leg, the length of the same line is controlled by the rotation of the 
intermediate revolute. 

Shown in Fig. 10.3 is the graph of the system depicted in Fig. 10.1. In 
that graph, the nodes denote rigid links, while the edges denote joints. By 
application of Euler's formula for graphs (Harary, 1972), the number L of 
independent loops of a system with many kinematic loops is given by 

L=j-l+l (10.20) 
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FIGURE 10.2. A leg of a simple platform-type parallel manipulator. 

where j is the number of revolute and prismatic joints and I is the number 
of links. 

Thus, if we apply Euler's formula to the system of Fig. 10.1, we conclude 
that its kinematic chain contains five independent loops. Hence, while the 
chain apparently contains six distinct loops, only five of these are indepen
dent. Moreover, the degree of freedom of the manipulator is six. Indeed, 
the total number of links of the manipulator is I = 6 x 5 + 2 = 32. Of these, 
one is fixed, and hence, we have 31 moving links, each with six degrees of 
freedom prior to coupling. Thus, we have a total of 31 x 6 = 186 degrees 
of freedom at our disposal. Upon coupling, each revolute removes five de
grees of freedom, and hence, the 36 kinematic pairs remove 180 degrees of 
freedom, the manipulator thus being left with 6 degrees of freedom. We 
derive below the mathematical model governing the motion of the overall 
system in terms of the independent generalized coordinates associated with 
the actuated joints of the legs. 

We assurne, henceforth, that each leg is a six-axis open kinematic chain 
with either revolute or prismatic pairs, only one of which is actuated, and 
we thus have as many actuated joints as degrees of freedom. Furthermore, 
we label the legs with Roman numerals I, II, ... , VI and denote the mass 
center of the mobile platform M by GM, with the twist of M denoted 
by tM and defined at the mass center. That is, if CM denotes the position 
vector of GM in an inertial frame and CM its velocity, while WM the angular 
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FIGURE 10.3. The graph of the fiight simulator. 

FIGURE 10.4. The free-body diagram of M. 

velocity of M, then 

tM == [~~] (10.21) 

Next, the Newton-Euler equations of Mare derived from the free-body 
diagram shown in Fig. 10.4. In this figure, the legs have been replaced by the 
constraint wrenches {w~i} F acting at point C M, the governing equation 
taking the form of eq.(1O.19a), namely, 

(10.22) 
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FIGURE 10.5. The serial manipulator of the Jth leg. 

with w W denoting the external wrench acting on M. Furthermore, let us 
denote by qJ the variable of the actuated joint of the Jth leg, all variables 
of the six actuated joints being grouped in the 6-dimensional array q, i.e., 

(10.23) 

Now, we derive a relation between the twist tM and the active joint rates, 
qJ, for J = I, II, ... , VI. To this end, we resort to Fig. 10.5, depicting the 
Jth leg as a serial-type, six-axis manipulator, whose twist-shape relations 
are readily expressed as in eq.(4.55a), namely, 

(10.24) 

where J J is the 6 x 6 Jacobian matrix of the Jth leg. 
In Fig. 10.5, the moving platform M has been replaced by the constraint 

wrench transmitted by the moving platform onto the end link of the Jth 
leg, -wCj, whose sign is the opposite of that transmitted by this leg onto M 
by virtue of Newton's third law. The dynamics model of the manipulator 
of Fig. 10.5 then takes the form 

(10.25) 

where I J is the 6 x 6 inertia matrix of the manipulator, while CJ is the 
matrix coefficient of the inertia terms that are quadratic in the joint rates. 
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Moreover, () J and T J denote the 6-dimensional vectors of joint variables 
and joint torques, namely, 

0 

[8J
' j () J == (}~2 , TJ == 

TJk (10.26) 
0 

(}J6 

0 

with subscript Jk denoting in turn the only actuated joint of the Jth leg, 
namely, the kth joint of the leg. If we now introduce eJk, defined as a unit 
vector all of whose entries are zero except for the kth entry, which is unity, 
then we can write 

(10.27) 

If the actuated joint is prismatic, as is the case in flight simulators, h is a 
force; if this joint is arevolute, then h is a torque. 

Now, since the dimension of q coincides with the degree of freedom of 
the manipulator, it is possible to find, within the framework of the natural 
orthogonal complement, a 6 x 6 matrix L J mapping the vector of actuated 
joint rates q into the vector of Jth-leg joint-rates, namely, 

(10.28) 

The calculation of L J will be illustrated with an example. 
Moreover, if the manipulator of Fig. 10.5 is not at a singular configura

tion, then we can solve for wJ from eq.(10.25), i.e., 

(10.29) 

in which the superscript -T stands for the transpose of the inverse, or 
equivalently, the inverse of the transpose, while I J = I J (() J) and C J = 
C J (() J, iJ J). Further, we substitute wJ as given by eq.(10.29) into eq.(10.22), 
thereby obtaining the Newton-Euler equations of the moving platform 
free of constraint wrenches. Additionally, the equations thus resulting now 
contain inertia terms and joint torques pertaining to the Jth leg, namely, 

VI 

MMtM = -WMMMtM+WW + LJ:JT [TJ - IJÖ J - cJiJJ ] (10.30) 
J=I 

Still within the framework of the natural orthogonal complement, we set 
up the relation between the twist tM and the vector of actuated joint rates 
qas 

(10.31) 
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which upon differentiation with respect to time, yields 

(10.32) 

In the next step, we substitute tM and its time-derivative as given by 
eqs.(10.31 & 10.32) into eq.(10.30), thereby obtaining 

MM(Tq + 1'q) + W MMMTq 
VI VI 

" T[" .] W" T + ~Jj IßJ+CJ()J =w + ~Jj TJ (10.33) 
J=I J=I 

Further, we recall relation (10.28), which upon differentiation with re
spect to time, yields 

(10.34) 

Next, relations (10.28 & 10.34) are substituted into eq.(10.33), thereby 
obtaining the model sought in terms only of actuated joint variables. After 
simplification, this model takes the form 

MMTq + MM1'q + W MMMTq 
J=VI VI 

+ L JjT [IJLJq + IJLJq + CJLJq] = w W + L JjT T j10.35) 
J=I J=I 

where now IJ = IJ(q) and CJ = CJ(q, q). 
Our final step in this formulation consists of deriving a reduced 6 x 6 

model in terms only of actuated joint variables. Prior to this step, we note 
that from eqs.(10.24), (10.28), and (10.31), 

(10.36) 

Upon substitution of the above relation into eq.(1O.35) and multiplication 
of both sides of eq.(1O.35) by TT from the left, we obtain the desired model 
in the form of eqs.(1O.19a), namely, 

VI 

M(q)q + N(q, q)q = T W + L LJT J 

J=I 

with the 6 x 6 matrices M(q), N(q,q), and vector T W defined as 

VI 

M(q) === TTMMT + L L}'IJLJ 
J+I 

. T . 
N(q, q) === T (MMT + W MMMT) 

VI 

+ LL}' [IJLJ+CJLJ] 
J=I 

T W ===TTwW 

(10.37) 

(1O.38a) 

(1O.38b) 

(1O.38c) 
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Alternatively, the foregoing variables ean be expressed in a more eompact 
form that will shed more light on the above model. To do this, we define 
the 36 x 36 matrices land C as weIl as the 6 x 36 matrix L, the 6 x 6 
matrix A, and the 6-dimensional veetor cp as 

and henee, 

1== diag(II, In,···, lVI) 

C == diag(CI, C n , ... , CVI) 

L == [LI Ln LVI] 

A == [LIeIk Lnenk LvIeVIk] 

cp == [!I In lVI f 

M(q) == TTMMT + LTIL 

N(q,q) == LTIL + LTC(q,q)L 
VI 

LLJrJ == Acp 
J=I 

(1O.39a) 

(1O.39b) 

(1O.3ge) 

(1O.39d) 

(1O.3ge) 

(1O.40a) 

(1O.40b) 

(1O.40e) 

whenee the mathematieal model of eq.(1O.37) takes on a more familiar 
form, namely, 

M(q)q+N(q,q)q=r w +Acp (10.41) 

Thus, for inverse dynamies, we want to determine cp for a motion given 
by q and q, which ean be done from the above equation, namely, 

cp = A -1 [M(q)q + N(q, q)q - r W ] (10.42) 

Notiee, however, that the foregoing solution is not reeursive, and sinee it 
requires linear-equation solving, it is of order n 3 , whieh thus yields a rat her 
high numerieal eomplexity. It should be possible to produee a reeursive 
algorithm for the eomputation of cp, but this issue will not be pursued here. 
Moreover, given the parallel strueture of the manipulator, the assoeiated 
reeursive algorithm should be parallelizable with multiple proeessors. 

For purposes of direet dynamies, on the other hand, we want to solve for 
q from eq.(10.41). Moreover, for simulation purposes, we need to derive the 
state-variable equations of the system at hand. This ean be readily done if 
we define r == q, the state-variable model thus taking on the form 

q=r 

r=M- 1 [-N(q,r)r+rw +Af] 

(1O.43a) 

(1O.43b) 

In light of the matrix inversion of the foregoing model, then, the eomplexity 
of the forward dynamies eomputations is also of order n3 . 
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Example 10.4.1 Derive matrix L J of eq.{10.28) for a manipulator having 
six identicallegs like that of Fig. 10.2. 

Solution: We attach co ordinate frames to the links of the serial chain of 
the Jth leg following the Denavit-Hartenberg notation, while noting that 
the first three joints intersect at a common point, and hence, we have rl = 
r2 = r3. According to this notation, we recall, vector ri is directed from 
the origin Oi of the ith frame to the operation point of the manipulator, 
which in this case, is GM' The Jacobian matrix of the Jth leg then takes 
the form 

the subscript J of the array in the right-hand side reminding us that the 
vectors inside it pertain to the Jth leg. Thus, matrix J J maps the joint-rate 
vector of the Jth leg, OJ, into the twist tM of the platform, i.e., 

Clearly, the joint-rate vector of the Jth leg is defined as 

Now, note that except for iJJ4 , all joint-rates of this leg are passive and 
thus need not appear in the mathematical model of the whole manipulator. 
Hence, we should aim at eliminating all joint-rates from the above twist
rate relation, except for the one associated with the active joint. We can 
achieve this if we realize that 

rJl x eJi +eJi x rJl = 0, i = 1,2,3 

Further, we define a 3 x 6 matrix AJ as 

with RJl defined, in turn, as the cross-product matrix of r Jl. Now, upon 
multiplication of J J by A J from the right, we obtain a 3 x 6 matrix whose 
first three columns vanish, namely, 

and hence, if we multiply both sides of the above twist-shape equation by 
A J from the right, we will obtain a new twist-shape equation that is free 
of the first three joint rates. Moreover, this equation is 3-dimensional, i.e., 
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where the subscript J attached to the brackets enclosing the whole left
hand side again reminds us that an quantities therein are to be understood 
as pertaining to the Jth leg. For example, e4 is to be read eJ4. Furthermore, 
only iJJ4 is associated with an active joint and denoted, henceforth, by qJ, 
i.e., 

(10.44) 

It is noteworthy that the foregoing method of elimination of passive joint 
rates is not ad hoc at an. It has been formalized and generalized to an six 
lower kinematic pairs (Angeles, 1994). 

We have now to eliminate both iJ J5 and iJ J6 from the foregoing equation. 
This can be readily accomplished if we dot-multiply both sides of the same 
equation by vector UJ defined as the cross product of the vector coefficients 
of the two passive joint rates, Le., 

We thus obtain a third twist-shape relation that is scalar and free of passive 
joint rates, namely, 

The above equation is clearly of the form 

(J(iJ = yJtM' J = I, II, ... , VI 

with (J and y J defined, in turn, as 

(J == UJ· eJ4 x (rJ4 - rJl) 

y J == [r Jl u~ UJ ] 

(1O.45a) 

(1O.45b) 

Upon assembling the foregoing six scalar twist-shape relations, we obtain 
a 6-dimensional twist-shape relation between the active joint rates of the 
manipulator and the twist of the moving platform, namely, 

with the obvious definitions for the two 6 x 6 matrices Y and Z given below: 

[ 
yf 1 

y= yr ' 
YVI 

We now can determine matrix T of the procedure described above, as long 
as Y is invertible, in the form 

T = y-1Z 
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whence the leg-matrix L J of the same procedure is readily determined, 
namely, 

L J = J:JIT 

Therefore, aII we need now is an expression for the inverse of the leg Ja
cobian JJ. This Jacobian is clearly fuII, which might discourage the reader 
from attempting its closed-form inversion. However, a closer look reveals 
that this Jacobian is similar to that of decoupled manipulators, studied 
in Section 4.5, and hence, its closed-form inversion should be reducible to 
that of a 3 x 3 matrix. Indeed, if we recaII the twist-transfer formula of 
eqs.(4.63a & b), we can then write JJ as 

where U J is a unimodular 6 x 6 matrix and K J is the Jacobian of the same 
Jth leg, but now defined with its operation point located at the center of 
the spherical joint. Thus, 

K =[Kll J - 0 

the superscript J indicating the Jth leg and with the definitions below: 

0: the 3 x 3 zero matrix; 

1: the 3 x 3 identity matrix; 

OJl: the cross-product matrix of 0Jl, the position vector of the center of 
the spherical joint; 

C M : the cross product matrix of CM, the position vector of GM. 

Furthermore, the 3 x 3 blocks of KJ are defined, in turn, as 

(Kll)J == [eI e2 e31J 

(K12)J == [e4 e5 e61J 

(K22 )J == [e4 x (r4 - rl) e5 x (r5 - rI) e6 x (r5 - rI) lJ 

Now, if the inverse of a block matrix is recaIIed, we have 

where the superscript of the blocks has been transferred to the whole ma
trix, in order to ease the notation. The problem of inverting K J has now 
been reduced to that of inverting two of its 3 x 3 blocks. These can be in
verted explicitly if we recaII the concept of reciprocal bases (Brand, 1965). 
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SJ4 == rJ4 - rJl 

SJ5 == rJ5 - rJl 

10.5 Dynamics of Rolling Robots 409 

ß{I == det(K{I) = (eI x e2 . e3)J 

ßt2 == det(Kt2) = [(e4 x S4) x (eXs5) . (e6 x S5)]J 

the subscripted brackets and parentheses still reminding us that all vectors 
involved pertain to the Jth leg. Moreover, since U J is unimodular, its 
inverse is simply 

U-I - [ 1 01 ] 
J - CM-OJl 

and hence, 

the matrix sought, L J , then being calculated as 

While we have a closed-form inverse of J J, we do not have one for Y, which 
is full and does not bear any particular structure that would allow us its 
inversion explicitly. Therefore, matrix L J should be calculated numerically. 

10.5 Dynamics of Rolling Robots 

The dynamics of rolling robots, similar to that of other robotic mechanical 
systems, comprises two main problems, inverse and direct dynamies. We 
will study both using the same mathematical model. Hence, the main task 
he re is to derive this model. It turns out that while rolling robots usually are 
nonholonomic mechanical systems, their mathematical models are formally 
identical to those of holonomic systems, the sole difference being that in 
the case under discussion, extra variables, besides the independent ones, 
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FIGURE 10.6. A 2-dof rolling robot: (a) its generallayoutj and (b) a detail of its 
actuated wheels. 

are needed to fully describe the configuration of the system. Therefore, 
relations between these dependent variables and the independent ones will 
be needed and will be derived in the course of our discussion. Moreover, 
we will study robots with both conventional and omnidirectional wheels. 
Of the latter, we will foeus on robots with Mekanum wheels. 

10.5.1 Robots with Conventional Wheels 

We study here the robot in Fig. 8.22, under the assumption that it is driven 
by motors collocated at the axes of its two coaxial wheels, indicated as MI 
and M2 in Fig. 8.22b. For quick reference, we repeat this figure here as 
Fig. 10.6. 

Our approach will be one of multibody dynamics, and for this reason, we 
distinguish five rigid bodies eomposing the robotic mechanical system at 
hand. These are the three wheels (two actuated and one caster wheel), the 
bracket carrying the caster wheel, and the platform. We label these bodies 
with numbers from 1 to 5, in the foregoing order, while noticing that bodies 
4 and 5, the bracket and the platform, undergo planar motion, and hence, 
deserve special treatment. The 6 x 6 mass matrices of the first three bodies 
are labeled MI to M 3 , with a similar labeling for their corresponding 6-
dimensional twists, the counterpart items for bodies 4 and 5 being denoted 
by M~, M~, t~, and t~, the primes denoting 3 x 3-as opposed to 6 x 
6 in the general case-mass matrices and 3-dimensional-as opposed to 
6-dimensional in the general case-twist arrays. 
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We undertake to formulate the mathematical model of the mechanical 
system under study, which is of the general form of eq.(1O.19a) derived for 
holonomic systems. The nonholonomy of the system brings about special 
features that will be highlighted in the derivat ions below. 

As a first step in our formulation, we distinguish between actuated and 
unactuated joint variables, grouped into vectors Oa and 01.1., respectively, 
their time-derivatives being the actuated and unactuated joint rates, Öa 

and Öv., respectively. From the kinematic analysis of this system in Subsec
tion 8.6.1, it is apparent that the foregoing vectors are all 2-dimensional, 
namely, 

(10.46) 

Further , we set to deriving expressions for the twists of the five moving 
bodies in terms of the actuated joint rates, i.e., we write those twists as 
linear transformations of Öa , i.e., 

and 

where 

T = [-i +.p8k -P8k] 
1 TJ 0 

T 2 = [P8k -(i +.P8k)] 
o TJ 

T 3 = [~:] 
T~= [ OCr4] 

with a, 8, p, and ). defined as 

a+b d 
8 =- l' a=--- l ' 

a 
).=

- l' 
T 

p= --d 

(1O.47a) 

(1O.47b) 

(10.48) 

(10.49) 

(10.50) 

(10.51) 

(10.52) 

(10.53) 

In the derivat ions below, we resort to the notation introduced in Sub
section 8.6.1. Expressions for 8 3 and C3 are derived below. First, we note 
that, from eq.(8.89), we can write 

(10.54) 

or 
(10.55) 



www.manaraa.com

412 10. Dynamics of Complex Robotic Mechanical Systems 

with 8 3 defined as 

and (}i,j denoting, of course, the (i, j) entry of 8, as derived in Subsec
tion 8.6.1. In more compact form, 

(1O.56a) 

with 021 and 022 defined as 

(1O.56b) 

Moreover, 

and hence, 
(10.57) 

Further, it is apparent from Fig. 10.6 that the scalar angular velocity of 
the bracket, W4, is given by 

and hence, 

Therefore, we can write 
(1O.58a) 

where 64 is defined as 

(1O.58b) 

Now, since we are given the inertial properties of the bracket in bracket 
coordinates, it makes sense to express (;4 in those coordinates. Such an 
expression can be obtained below: 

Upon expressing ih and"j; in terms of ih and iJ2 , we obtain 

(10.59) 

whence it is apparent that 

(10.60) 
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Therefore, 

T~ = (10.61) 

thereby completing all needed twist-shaping matrices. 
The 2 x 2 matrix of generalized inertia, 1(8), is now obtained. Here 

we have written this matrix as a function of all variables, independent 
and dependent, arrayed in the 4-dimensional vector 8, because we cannot 
obtain an expression for 8u in terms of 8a , given the nonholonomy of the 
system at hand. Therefore, I is, in general, a function of (h, (h, B3 , and 'ljJ. 
To be sure, from the above expressions for the twist-shaping matrices Ti 
and T~, it is apparent that the said inertia matrix is an explicit function 
of 'ljJ only, its dependence on BI and B2 being implicitly given via vectors 
e3 and f3 . We derive the expression sought for I starting from the kinetic 
energy, namely, 

or 

(10.62) 

and hence, 
3 5 

1= LT[MiTi + L(T~)TM~T~ (10.63) 
1 4 

In order to expand the foregoing expression, we let J w and Je be the 
3 X 3 inertia matrices of the two actuated wheels and the cast er wheel, 
respectively, the scalar moments of inertia of the bracket and the platform, 
which undergo planar motion, being denoted by hand Ip- Likewise, we 
let m w , mb, m e , and m p denote the masses of the corresponding bodies. 
Therefore, 

MI = [~ m~13] =M2 

M 3 = [~ m~13] 
M~= [~ OT ] 

mb12 

M~= [~ OT ] 
m p 12 

with 0 and 13 denoting the 3 x 3 zero and identity matrices, while 0 and 12 

the 2-dimensional zero vector and the 2 x 2 identity matrix. Furthermore, 
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under the assumption that the actuated wheels are dynamically balanced, 
we have 

Jw ~ [~ ~ il 
Moreover, we assume that the caster wheel can be modeled as a rigid disk 
of uniform material of the given mass m c and radius r, and hence, in 
bracket-fixed coordinates { e3, f3 , k}, 

It is now a simple matter to calculate 

where the symmetry between the two foregoing expressions is to be high
lighted: that is, the second expression is derived if the diagonal entries of 
the first expression are exchanged, which is physically plausible, because 
such an exchange is equivalent to a relabeling of the two wheels. The calcu
lation of the remaining products is less straightforward but can be readily 
obtained. From the expressions far T 3 and M 3 , we have 

TfM3T 3 = [Sr cn [~ m~13] [~:] 
= SfJcS 3 +mcCfC3 

In order to calculate the foregoing products, we write S3 and C 3 in com
ponent form, i.e., 

1 [2 0 

~l [~~' ~~' 1 J c E>3 = 4mcr2 ~ 1 
0 1 (}21 (}22 

1 2 [~n ~~" 1 = 4mcr 
(}21 (}22 

and hence, 
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Likewise, 

Further, 

(T' )TM' T' - [0 cT 1 [h OT] 
4 4 4 - 4 4 0 mb12 

= h 040r + mbCrC4 

Upon expansion, we have 

(T~fM~ T~ = h [_ O~ 0~!22l 
(}21(}22 (}22 

+ 1 d2 [ 0~1 + 4p2(}~1 
4mb 0 210 22 + 4p2(}11(}12 

Finally, 

(T' )TM' T' = [0 cT 1 [Ip OT] [or] 
5 5 5 5 5 0 m p 12 C 5 

= Ip 050r + m p CrC5 

which can be readily expanded as 

IT I I ()2[1 -1] 2[(1/4)+>.2 (1/4)->.2] 
(T5 ) M 5T 5 =Ip po -1 1 +mpr (1/4)->.2 (1/4)+>.2 

We can thus express the generalized inertia matrix as 

I=Iw+Ie+Ib+Ip 

where I w , I e , Ib, and Ip denote the contributions of the actuated wheels, 
the caster wheel, the bracket, and the platform, respectively, i.e., 
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It is now apparent that the contributions of the actuated wheels and the 
platform are constant, while those of the caster wheel and the bracket 
are configuration-dependent. Therefore, only the latter contribute to the 
Coriolis and centrifugal generalized forces. We thus have 

T· T· 'T'·' T MT = T 3 M 3T 3 + (T4 ) M 4T 4 

From the expression for T§M3 T 3 , we obtain 
T· T· T· 

T 3 M 3T 3 = 8 3 J c8 3 + m3C3 C 3 

the time-derivatives being displayed below: 

8 3 = [Oll e3 + (Jll "pf3 + 021 k 012e 3 + (J12"pf3 + 022k ] 

63 = r [ -Ollf3 + (Jll "pe3 -012f3 + (J12"pe3] 

with the time-derivatives of the entries of 8 given as 

e = "p [ -a sin 11' + (cos 11')/2 a sin 11' + (cos 11')/2 ] 
p[-a cos 11' - (sinlP)/2] p[acoslP - (sinlP)/2] 

(10.64) 

Upon expansion, the products appearing in the expression for T§M3T3 

become 

Therefore, 

2(Jll~12 + ~21~22] 
2(J12(J12 + (J22(J22 

T§M3T3 = m cr 2 [6(Jll~ll + ~21~21 
4 6(J12(Jll + (J22(J21 

Likewise, 
,T ,., ·T T· 

(T4 ) M 4T 4 = h84 84 + mbC4 C 4 

the above time-derivatives being 

Ö~ = [021 0 22 ] 

6 4 = d [Cll e3 + C12f3 C21 e3 + C22f3] 

with coefficients Ci,j given below: 

1 . . 
Cll = 2(J21 + P(JlllP 

1-· . 
C12 = 2(J211P - P(Jll 

1 . . 
C21 = 2(J22 + P(J121P 

1-· . 
C22 = 2(J221P - P(J12 
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Hence, 

~21 C21 - 2P()1l C22 ] 

()22C21 - 2p()12 C22 

In the final steps, we undertake to calculate TTWMT. As we saw earlier, 
only the caster wheel and the bracket can contribute to this term, for the 
contributions of the other bodies to the matrix of generalized inertia are 
constant. However, the bracket undergoes plan ar motion, and according to 
Exercise 6.6, its contribution to this term vanishes. Therefore, 

TTWMT = Tfw3M 3T 3 

Upon expansion of the foregoing product, we have 

Tfw3M 3T 3 = [er crJ [d 
= effh1c 8 3 

First, we obtain 0 3 in bracket coordinates, by recalling eq.(10.54), i.e., 

(10.65) 

with W e and Wk denoting the nonzero components of W3 in bracket coordi
nates, i.e., 

W e = ()ll fit + ()lih 
Wk = p8(fh - ( 2 ) + ()21 8 1 + ()2282 

and hence, 

(10.66) 

(10.67) 

with E 3 and K defined as the cross-product matrices of e3 and k, respec
tively, that is, 

(10.68) 



www.manaraa.com

418 10. Dynamies of Complex Robotic Mechanical Systems 

Therefore, 

+l 
After simplification, 

Now it is a simple matter to verify that 

with O 2 denoting the 2 x 2 zero matrix, and hence, 

In summary, the Coriolis and centrifugal-force terms of the system at hand 
take the form 

C(O 9)9 _ m cr2 [6011(~11~1+~12~2)+~21(~12~1+~22~2)] 
, a a - 4 6012 (01101 + 01202) + 022(01201 + 02202) 

+h(02101 +022( 2) [::~] + ~mbd2(C1101 +C21(2) [~:~] 

- 2p( C1201 + C22(2) [:~~] 
If we recall that the Cij coefficients are linear in the joint rates, then the 
foregoing expression clearly shows the quadratic nature of the Coriolis and 
centrifugal terms with respect to the joint rates. 

The derivation of the forces supplied by the actuators is straightforward: 

The dissipative generalized force is less straightforward, but its calculation 
is not too lengthy. In fact, if we assume linear dashpots at all joints, then 
the dissipation function is 

with C 12 and C 34 defined as 
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Now, if we recall the expression for iJu in terms of iJa, we end up with 

D being defined, in turn, as the equivalent damping matrix, given by 

the dynamics model under study thus taking the form 

I(9)Öa + C(9, iJa)iJa = T - DiJa 

with land C(9, iJa ) given, such as in the case of holonomic systems, as 

1(9) = TTMT 

C(9, iJa ) = TTMT + TTWMT 

thereby completing the mathematical model governing the motion of the 
system at hand. Note here that 9 denotes the 4-dimensional vector of joint 
variables containing all four angles appearing as components of 9a and 9u . 

Because of the nonholonomy of the system, an expression for the latter in 
terms of the former cannot be derived, and thus the whole 4-dimensional 
vector 9 is left as an argument of both land C. 

Note that calculating the torque T required for a given motion-direct 
dynamics-of the rolling robot under study is straightforward from the 
above model. However, given the strong coupling among all variables in
volved, a recursive algorithm in this case is not apparent. On the other 
hand, the determination of the motion produced by a given history of joint 
torques requires (i) the calculation of I, which can be achieved symboli
cally; (ii) the inversion of I, which can be done symbolically because this 
is a 2 x 2 matrix; (iii) the calculation of the Coriolis and centrifugal terms, 
as weIl as the dissipative forces; and (iv) the integration of the initial-value 
problem resulting once initial values to 9 and iJa have been assigned. 

10.5.2 Robots with Omnidirectional Wheels 

We now consider a 3-dof robot with three actuated wheels of the Mekanum 
type, as shown in Fig. 8.24, with the configuration of Fig. 10.7, which will 
be termed, henceforth, the 6.-array. This system is illustrated in Fig. 10.8. 

Below we will adopt the notation of Subsection 8.6.2, with Q: = 7r /2 and 
n = 3. We now recall that the twist of the platform was represented in 
planar form as 

(10.69) 

where w is the scalar angular velocity of the platform and c is the 2-
dimensional vector of its mass center, which will be assumed to coincide 
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FIGURE 10.7. Rolling robot with ODWs in a 6.-array. 

FIGURE 10.8. A view of the three-wheeled robot with Mekanum wheels in a 
6.-array. 
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with the centroid of the set of points {Ci H. Moreover, the three wheels 
are actuated, and hence, the 3-dimensional vector of actuated joint rates is 
defined as 

(10.70) 

The relation between 8a and t' was derived in general in Subsection 8.6.2. 
As pertaining to the robot of Fig. 10.7, we have 

(lO.71a) 

with the two 3 x 3 Jacobians J and K defined as 

J == -al, K == [~ ~fl 
r (r 

(lO.71b) 

where, it is recalled, a is the radius of the wheel hub and r is that of the 
rollers at the point of contact with the ground. Moreover, vectors {ei H 
and {fi H were defined in Subsection 8.6.2. Below we derive expressions 
for wand c in terms of the joint rates, from eq.(lO.71a). First, we expand 
the three equations of the latter, thus obtaining 

T . 
rw + f l C = -a(Jl 

rw + fic = -aiJ2 
T . 

rw + f3 C = -a(J3 

(1O.72a) 

(lO.72b) 

(1O.72c) 

Upon adding corresponding sides of the three foregoing equations, we ob
tain 

3 3 

3rw + cT L f i = -a L iJi 

1 1 

But from Fig. 1O.7b, it is apparent that 

Likewise, 

el + e2 +e3 = 0 

fl -+- f2 + f3 = 0 

(1O.73a) 

(1O.73b) 

v'3 v'3 v'3 
el = 3(f3 - f2), e2 = 3(fl - f3), e3 = 3(f2 - fd (1O.73c) 

v'3 v'3 v'3 
fl = 3(e3 - e2), f2 = 3(el - e3), f3 = 3(e2 - el) (1O.73d) 

and hence, the above equation for wand c leads to 

3 

w = -~ :LiJi 
3r 1 

(10.74) 
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Now we derive an expression for c in terms of the actuated joint rates. 
We do this by subtracting, sidewise, eqs.(lO.72b & c) from eqs.(lO.72a & 
b), respectively, thus obtaining a system of two linear equations in two 
unknowns, the two components of the 2-dimensional vector C, namely, 

Ac=b 

with matrix A and vector b defined as 

b == -a [~l -~2] (h - (}3 

where we have used relations (10. 73c). Since A is a 2 x 2 matrix, its inverse 
can b~ readily found with the aid of Facts 4.8.3 and 4.8.4, which yields 

Now, from Fig. 10.7, 

. 2 
c= -a[-Eel 

3 

and hence, c reduces to 

2 .. .. 2· .. 
c = "3a[«(}2 - (}l)fl + «(}2 - (}3)f3] == "3a[(}2(fl + f3) - (}lfl - (}2f2] 

But by virtue of eq.(10.73b), 

the above expression for c thus becoming 

(10.75) 

Thus, w is proportional to the mean value of { ei H, while c is proportional 
to the mean value of { eifi H. In deriving the Euler-Lagrange equations of 
the robot at hand, we will resort to the natural orthogonal complement, and 
therefore, we will require expressions for the twists of all bodies involved 
in terms of the actuated wheel rates. We start by labeling the wheels as 
bodies 1, 2, and 3, with the platform being body 4. Moreover, we will 
neglect the inertia of the rollers, and so no labels need be attached to these. 
Furtheqnore, the wheel hubs undergo angular velocities in two orthogonal 
directions, and hence, a full 6-dimensional twist representation of these will 
be required. Henceforth, we will regard the angular velocity of the platform 
and the velocity of its mass center as 3-dimensional vectors. Therefore, 

(10.76) 
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with A defined, in turn, as the ratio 

Now, the wheel angular velocities are given simply as 

or 

3 

Wi = eiei + wk = eiei - A(L ei)k 
I 

WI = (eI - Ak)el - Ae2 k - Ae3k 

w2 = -Aelk + (e2 - Ak)e2 - Ae3k 

W3 = -Aelk - Ae2 k + (e3 - Ak)e3 

(10.77) 

(10.78) 

(1O.79a) 

(1O.79b) 

(10.79c) 

Now, similar expressions are derived for vectors Ci. To this end, we resort 
to the geometry of Fig. 10.7, from which we derive the relations 

and hence, 

Cl = -Ar[(3el + e2 + (3)fl + 2(e2 f 2 + e3 f 3 )] 

C2 = -Ar[2el f l + (eI + 3e2 + (3 )f2 + 2e3 f3 ] 

C3 = -Ar[2(e l f l + e2 f 2 ) + (eI + 82 + 3(3 )f3 ] 

(1O.80a) 

(1O.80b) 

(1O.80c) 

From the foregoing relations, and those for the angular velocities of the 
wheels, eqs.(1O.79a-c), we can now write the twists of the wheels in the 
form 

(10.81) 

where 

On the other hand, similar to what we have in eq.(10.75), an interesting 
relationship among angular velocities of the the wheels arises here. Indeed, 
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upon adding the corresponding sides of the three equations (1O.79a-c), we 
obtain 

333 

LWi = LiJiei - 3Ak LiJi 
1 1 

Further , we dot-multiply the two sides of the foregoing equation by k, which 
yields, upon rearrangement of terms, 

3 3 

3A LiJi = -k· LWi 
1 1 

and by virtue of eq.(10.74), 

w=k·w, 
1 3 

w= - LWi 
3 1 

(10.82) 

that is, the vertical component 0/ the mean wheel angular velocity equals 
the scalar angular velocity 0/ the plat/orm. 

Now we proceed to establish the mathematical model governing the dy
namies of the system under study. To this end, we first label the three 
wheels as bodies 1, 2, and 3, with the platform being labeled 4. The 
generalized inertia matrix is then calculated as 

(10.83) 

where 

M i = [ lw 0] 
o mwl ' 

i = 1,2,3, (10.84) 

We will also need the angular-veloeity dyads, W i , whieh are ealculated as 

[ ni 0] 
W i = 0 0 ' i = 1,2,3 (10.85) 

where W 4 will not be needed, sinee the platform undergoes planar motion. 
We have 

-AIwk 
-mwAr(f1 + 2f2 ) 

Moreover, we assume that in a loeal eoordinate frame {ei, fi, k}, 
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where 

Likewise, 

Furthermore, 
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K == J +9mw r 2 

L == J +3mw r 2 

M== J -3mw r2 

[ -X'L >.2J 
TIM2T 2 = >.2J 1+ >.2K 

>.2M >.2J 
>.2M 

TfM3 T 3 = >.2J >.2 L 

-X'M] >.2J 
>.2 L 

>.2J [ -X'L 

>.2J >.2J 

-X'J ] 

1+ >.2K 

M 4T 4 = >. [2 Ip\ 
Ipk Ipk ] 

mpr 1 2mprf2 2mprf3 

It is apparent that by virtue of the planar motion undergone by the plat
form, only its moment of inertia about the vertical passing by its mass 
center is needed. If we let this moment of inertia be H, then 

[ 
H + 4mpr 2 H - 2mpr 2 H - 2mpr 2] 

TfM4T 4 = >.2 H - 2mpr 2 H + 4mpr 2 H - 2mpr 2 
H - 2mpr 2 H - 2mpr 2 H + 4mpr 2 

Upon summing all four products computed above, we obtain 

[
Cl! ß ß] 

1= ß Cl! ß 
ß ß Cl! 

with the definitions below: 

which is a constant matrix. Moreover, note that the geometrie and inertial 
symmetry assumed at the out set is apparent in the form of the foregoing 
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inertia matrix, its inverse being readily obtained in closed form, namely, 

[
0: + ß -ß -ß 1 -1 1 

I = ß -ß 0: + ß -ß , ß == (0: + ß)o: - 2ß2 
-ß -ß 0: + ß 

Next, we turn to the calculation of the TTMT term. This is readily found 
to be 

4 
T . "T . T MT = L Ti MiT i 

1 

each of the foregoing products being expanded below. We have, first, 

Tl = [3'\~~el -'\rw(~3 - e2) '\rw(e~ - e2)] 

T 2 = ['\rw(e~ - e3) 3'\~~e2 -'\rw(~l - e3)] 

T3 = [0 0 wf3 ] 
-'\rw(e2 - el) '\rw(e2 - ed 3'\rwe3 

T4 = ,\ [0 0 0] 
-2rwel -2rwe2 - 2rwe3 

Hence, for the first wheel, 

Therefore, 
-1 
o 
o ~l 

where the skew-symmetric matrix is the cross product matrix of vector 
[0, 1, 1 f. By symmetry, the following two products take on a similar form, 
except for the skew-symmetric matrix, which then becomes, correspond
ingly, the cross-product matrix of vectors [1,0, l]T and [1, 1, O]T. This 
means that the first of these three products is affected by the rotation of 
the second and the third wheels, but not by that of the first one; the sec
ond of those products is affected by the rotation of the first and the third 
wheels, but not by the second; the third product is affected, in turn, by 
the rotation of the first two wheels, but not by that of the third wheel. 
Therefore, 

[0 
-1 

~ll T· 2 2 0 T 2 M 2T 2 = 3V3'\ mwr w ~ 
1 

[ 0 
0 

~1 1 
T· 2 2 T 3 M 3T 3 = 3V3'\ mwr w 0 0 

-1 1 
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Furthermore, 

MT _,\[ 0 
4 4 - -2mprwe l 

and hence, 

(1O.87a) 

whose skew-symmetric matrix is readily identified as the cross-product ma
trix of vector [1, 1, 1 V, thereby indicating an equal participation of an 
three wheels in this term, a rather plausible result. Upon adding an four 
products calculated above, we obtain 

TTMT = 2V3,\2(3mw + m p )r2w [ ~ 
-1 

-1 
o 
1 

(10.88) 

The equal participation of an three wheels in the foregoing product is ap
parent. Moreover, notice that the term in parentheses can be regarded as 
an equivalent mass, which is merely the sum of an four masses involved, 
the moments of inertia of the wheels playing no role in this term. 

We now turn to the calculation of the TTWMT term, which can be 
expressed as a sum, namely, 

3 

TTWMT = LT;WiMiTi 
1 

where we have not considered the contribution of the platform, because 
this undergoes planar motion. Moreover, matrices W i, for i = 1, 2, and 3, 
take the obvious forms 

W i == [~i g] 
We then have, for the first wheel, 

Now, it does not require too much effort to calculate the complete first 
product, which merely vanishes, Le., 

with 0 66 defined as the 6 x 6 zero matrix. By symmetry, the remaining 
two products also vanish, and hence, the sum also does, Le., 

(10.89) 
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Now, calculating the dissipative and active generalized forces is straight
forward. We will neglect here the dissipation of energy occurring at the 
bearings of the rollers, and hence, if we assurne that the lubricant of the 
wheel hubs pro duces linear dissipative torques, then we have 

(10.90) 

where c is the common damping coefficient for all three wheel hubs. We now 
have all the elements needed to set up the mathematical model governing 
the dynamics of the robot, namely, 

(10.91) 

where we have emphasized that the term containing Coriolis and centrifugal 
forces is a function not only ofthe vector ofthe wheel-hub variables (Ja, but 
also of the orientation of the platform, given by angle a. However, we do 
not have a fourth dynamics equation to compute a, and hence, its value has 
to be obtained by numerical quadrat ure from w. This feature is common 
to all nonholonomic systems. 
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A 
Kinematics of Rotations: 
A Summary 

The purpose of this appendix is to outline proofs of some results in the 
realm of kinematics of rotations that were invoked in the preceding chap
ters. Further details are available in the literature (Angeles, 1988). 

We start by noticing two preliminary facts whose proof is straightfor
ward, as the reader is invited to verify. 

Lemma A.l The (djdt)(·) and the vect( .) operntors, for 3 x 3 matrix 
opemnds, commute. 

and 

Lemma A.2 The (djdt)(·) and the tr( .) operntors, for n x n matrix 
opemnds, commute. 

Furthermore, we have 

Theorem A.l Let A and S both be 3 x 3 matrices, the former arbitmry, 
the latter skew-symmetric. Then, 

1 
vect(SA) = "2[tr(A)l- Als 

where s = vect( S ). 

Proof: An invariant proof of this theorem appears elusive, but a compo
nentwise proof is straightforward. Indeed, let aij denote the (i, j) entry of 
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A, and Si the ith component of s. Then, 

Hence, 

[ 
-a21 S3 + a31 S2 

SA = anS3 - a31S1 

-an S 2 + a21 S 1 

-a22 S3 + a32 S 2 

a12 S3 - a32 S 1 

-a12 S 2 + a22 S 1 

-a23S3 + a 33 S 2 ] 

a13S 3 - a33 s 1 

-a13 s 2 + a23 S 1 

1 
vect(SA) = 2 [ 

(a22 + a33)sl - a12 S 2 - a13S3] 

(an + a33)s2 - a21 S 1 - a23 S3 

(an + a22)s3 - a31 S 1 - a32 S 2 

On the other hand, 

[
a22 + a33 

tr( A ) 1 - A = -a21 

-a31 

and hence, 

thereby completing the proof. Moreover, we have 

Theorem A.2 Let A, S, and s be defined as in Theorem A.l. Then, 

tr( SA) = -2s· [vect( A)] 

Proof: From the above expression for SA, 

q.e.d. 

tr( SA) = -a21s3 + a31S2 + a12S3 - a32S1 - a13S2 + a23S1 

= (a23 - a32)sl + (a31 - a13)s2 + (a12 - a2t} s 3 

=[Sl S2 S3] [~~~=~~~] =-2s·[vect(A)] (A.l) 
a12 - a21 

Now we turn to the proof of the relations between the time-derivatives 
of the rotation invariants and the angular-velocity vector. Thus, 

Theorem A.3 Let v denote the 4-dimensional array of natural rotation 
invariants, as introduced in Section 2.3.2 and reproduced below for quick 
reference: 

v == [:] 
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Then the relationship between v and the angular velocity w is given by 

v=Nw 

with N defined as 

Proof: Let us obtain first an expression for e. This is readily done by 
recalling that e is the real eigenvector of Q, i.e., 

Qe=e 

Upon differentiation of both sides of the foregoing equation with respect to 
time, we have 

i.e., 
(1- Q)e = Qe 

An expression for Q can be derived from eq.(3.46), which yields 

(A.2) 

Therefore, 
Qe = Oe == w xe 

and hence, the above equation for e takes the form 

(1- Q)e = w x e 

from which it is not possible to solve for e because matrix (1-Q) is singular. 
Indeed, since both matrices inside the parentheses have an eigenvalue +1, 
their difference has an eigenvalue 0, which renders this difference singular. 
Thus, one more relation is needed in order to be able to determine e. This 
relation follows from the condition that IIel1 2 = 1. Upon differentiation of 
both sides of this condition with respect to time, we obtain 

eTe = 0 

the last two equations thus yielding a system of four scalar equations to 
determine e. We now assemble these equations into a single one, namely, 

Ae=b 

where A is a 4 x 3 matrix, while b is a 4-dimensional vector, defined as 
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The foregoing overdetermined system of four equations in three unknowns 
now leads to a system of three equations in three unknowns if we multiply 
its two sides by AT from the right, thereby producing 

ATAe=ATb 

We ean therefore solve for e from the above equation in the form 

where AT A takes the form 

But the sum inside the parentheses is readily identified as twice the sym
metrie eomponent of Q, if we reeall the Cartesian deeomposition of matrices 
introdueed in eq.(2.56). Therefore, 

Q + QT = 2[(eos</»1 + (1 - eos</»eeT] 

Henee, 
AT A = 2(1- eos</»I- (1- 2eos</»eeT 

As the reader ean readily verify, the inverse of this matrix is given by 

ATA)-l 1 1 1- 2eos</> T = + ee 
( 2(1- eos</» 2(1- eos</» 

whieh fails to exist only in the trivial ease in whieh Q beeomes the identity 
matrix. Upon expansion of the last expression for e, we have 

Now QTE is obtained by reealling eq.(2.54), thereby obtaining 

QTE = (eos </»E + (sin </> )(1 - eeT ) 

the final expression for e thus being 

1 e = - ( </» [(1- eos</»E - (sin</»(I- eeT)]w 
21-eos 

Now, an expression for ~ is obtained upon equating the traee of the two 
sides of eq.(A.2), whieh yields 

tr( Q) = tr( S'lQ ) (A.3) 

From Lemma A.2, 
. d 

tr( Q ) = dt tr( Q ) (A.4) 
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and hence, 
tr( Q) = - 2~ sin </> 

On the other hand, from Theorem A.2, 

tr( OQ) = -2w· (sin</»e 

Therefore, 
</>=w·e 

Upon assembling the expressions for e and~, we obtain the desired relation, 
with N given as displayed above, thereby proving the theorem. 

Theorem A.4 Let Adenote the 4-dimensional array of linear rotation 
invariants, as introduced in Section 2.3.3 and reproduced below for quick 
reference: 

A= [(Sin</»e] = [ vect(Q) ] 
- cos</> - [tr( Q) - 1]/2 

Then the relationship between ..x and the angular velocity is given by 

with L defined as 
L = [(1/2)[tr(Q)1 - Q]] 

- -(sin</»eT 

Proof: From Lemma A.1, we have 

d . 
dt vect( Q) = vect( Q ) (A.5) 

On the other hand, equating the vectors of the two sides of eq.(A.2) yields 

vect( Q) = vect( OQ) 

and hence, 
d 
dt vect( Q) = vect( OQ ) 

But, if we recall Theorem A.1, the foregoing relation leads to 

d 1 
dtvect(Q) = 2[tr(Q)1- Q]w 

Likewise, from Lemma A.2, we have 

d . 
dt tr( Q) = tr( Q ) 
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and hence, 
d 
dt tr( Q) = tr(!1Q) 

Now, if we recall Theorem A.2, the foregoing relation leads to 

:ttr(Q) = -2w· [vect(Q)] = -2(sincl»eT w 

Hence, 

:t (coscl» = -(sincl»eT w 

U pon assembling the last two expressions for the time-derivatives of the 
vector of Q and cos cI>, we obtain the desired relation. 

Theorem A.5 Let 11 denote the 4-dimensional array ofthe Euler-Rodrigues 
parameters of a rotation, as introduced in Section 2.3.6 and reproduced 
below for quick reference: 

= [[sin(cI>/2)]e] = [ r ] 
11 - cos(cI>/2) - ro 

Then, the relationship between i} and the angular velocity takes the form 

i}=Hw 

with H defined as 

H = ~ [COS(ct>/2)l - Sin(cI>/2)E] = ~ [rol - R] 
- 2 - sin(cI>/2)eT - 2 _rT 

where R is the cross-product matrix of r. 

Proof: If we differentiate r, we obtain 

. .. (cl» ~ (cl» r = e sm "2 + e"2 cos "2 

and hence, all we need to derive the desired relations is to find expres
sions for e and ~ in terms of the Euler-Rodrigues parameters. Note that 
from Theorem A.3, we already have those expressions in terms of the nat
ural invariants. Thus, substitution of the time-derivatives of the natural 
invariants, as given in Theorem A.3, into the above expression for r leads 
to 

r = - - sin - Ew + - sm - w . 1 ( cl> ) 1 . ( cl> ) sin cl> 
2 2 2 2 1- coscl> 

1 [( cl> ) ( cl> ) sin cl> ] + - (e . w) cos - - sin - e 
2 2 21-coscl> 

(A.6) 
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Now, by reealling the identities giving the trigonometrie funetions of</J in 
terms of those of </J/2, we obtain 

. ( </J ) sin </J ( </J ) 
sm "2 l_eos</J=eos"2 

and henee, the term in braekets of the above expression vanishes, the 
expression for r thus reducing to 

thereby completing the proof. 
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B 
The Numerical Solution of Linear 
Algebraic Systems 

In this appendix we consider the solution of the linear algebraic system 

Ax=b (B.I) 

with A defined as a Jull-rank m x n matrix, while x and bare n- and m
dimensional vectors, respectively. The case m = n is the most frequently 
encounteredj this case is weH documented in the literature (Dahlquist and 
Björck, 1974; Golub and Van Loan, 1989) and need not be further discussed. 
We will consider only the foHowing two cases: 

(a) overdetermined: m > nj and 

(b) underdetermined: m < n. 

The overdetermined case does not admit a solution, unless vector b hap
pens to lie in the range of A. Besides this special case, then, we must 
reformulate the problem, and rather than seeking a solution of eq.(B.1), we 
will look for an approximation of that system of equations. Moreover, we 
will seek an approximation that will satisfy an optimality condition. 

The underdetermined case, on the contrary, admits infinitely-many so
lutions, the objective then being to seek one that satisfies the system of 
equations and satisfies an additional optimality condition as weH. 

We study each of these cases in the sections below. 
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B.I The Overdetermined Case 

The error e in the approximation of eq.(B.1) is defined as 

e:::::b-Ax (B.2) 

An obvious way of imposing an optimality condition on the solution x is 
to specify that this solution minimize a norm of e. All norms of e can be 
expressed as 

( 
m ) l/p 

Iiellp::::: ~ ~ e~ (B.3) 

with ek being understood as the kth component of the m-dimensional vec
tor e. When p = 2, the foregoing norm is known as the Euclidean norm, 
which we have used most frequently in this book. When p ---. 00, the in
jinity norm, also known as the Chebyshev norm, is obtained. It turns out 
that upon seeking the value of x that minimizes a norm of e, the simplest 
is the Euclidean norm, for the minimization of its square leads to a linear 
system of equations whose solution can be obtained directly, as opposed to 
iteratively. Indeed, let us set up the minimization problem below: 

1 
z(x)::::: 2"e,,~ ---. min 

x 
(B.4) 

The normality condition of the minimization problem at hand is derived 
upon setting the gradient of z with respect to x equal to zero, Le., 

dz = 0 
dx 

(B.5) 

Now, the chain rule and the results of Subsection 2.3.1 allow us to write 

(B.6) 

and hence, we have the first result: 

Theorem B.1.1 The error in the approximation of eq.(B.l), for the full
rank m x n matrix A, with m > n, is of minimum Euclidean norm if it 
lies in the nullspace of AT. 

Furthermore, if eq.(B.2) is substituted into eq.(B.6), and the product 
thus resulting is substituted, in turn, into the normality condition, we 
obtain 

ATAx = ATb (B.7) 

which is known as the normal equation of the minimization problem at 
hand. By virtue of the assumption on the rank of A, the product AT A is 
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positive-definite and hence, invertible. As a consequence, the value Xo of x 
that minimizes the Euclidean norm of the approximation error of the given 
system is 

(B.8) 

the matrix coefficient of b being known as a genemlized inverse of A. The 
error obtained with this value is known as the least-square error of the 
approximation, i.e., 

eo=b-Axo (B.9) 

The reader should be able to prove one more result: 

Theorem B.1.2 (Projection Theorem) The least-square error is orthogo
nal to Axo. 

While the formula yielding the foregoing generalized inverse is quite sim
ple to implement, the number of floating-point operations (flops) it takes 
to evaluate, along with the ever-present roundoff errors in both the data 
and the results, renders it not only inefficient, but also unreliable if ap
plied as such. Indeed, if we recall the concept of condition number, in
troduced in Section 4.9 and recalled in Subsection 8.2.2, along with the 
definition adopted in the latter for the condition number, it becomes ap
parent that the condition number of AT A is exactly the square of the 
condition number of A. This result can be best understood if we apply the 
Polar-Decomposition Theorem, introduced in Section 4.9, to rectangular 
matrices, but we will not elaborate on this issue here. 

As a consequence, then, even if A is only slightly ill-conditioned, the 
product AT A can be catastrophically ill-conditioned. Below we outline 
two procedures to calculate efficiently the least-square approximation of 
the overdetermined system (B.I) that preserve the condition number of A 
and do this with a low number of flops. 

B.l.l The Numerical Solution of an Overdetermined System 
of Linear Equations 

In seeking a numerical solution of the system of equations at hand, we would 
like to end up with a triangular system, similar to the LU-decomposition 
applied to solve a system of as many equations as unknowns, and hence, 
we have to perform some transformations either on the rows of A or on 
its columns. A safe numerical procedure should thus preserve (a) the Eu
clidean norm of the columns of A and (b) the inner product between any 
two columns of this matrix. Hence, a triangularization procedure like LU
decomposition would not work, because this does not preserve inner prod
ucts. Obviously, the transformations that do preserve these inner products 
are orthogonal, either rotations or reflections. Of these, the most popular 
methods are (a) the Gram-Schmidt orthogonalization procedure and (b) 
Householder refiections. 
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The Gram-Schmidt procedure consists in regarding the columns of A as 
a set of nm-dimensional vectors {ak}I. From this set, a new set {ek}l 
is obtained that is orthonormal. The procedure is quite simple and works 
as follows: Define el as 

(B.lO) 

Further, we define e2 as the normal component of a2 onto e2, as introduced 
in eq.(2.6b), i.e., 

b2 == (1 - eleDa2 
b 2 

e2 == IIb211 

(B.Ua) 

(B.Ub) 

In the next step, we define e3 as the unit vector normal to the plane defined 
by el and e2 and in the direction in which the inner product er . a3 is 
positive, which is possible because all vectors of the set {ak }l have been 
assumed to be linearly independent-remember that A has been assumed 
to be of full rank. To this end, we subtract from a3 its projection onto the 
plane mentioned above, i.e., 

b3 = (1 - elef - e2ena3 
b 3 

e3 == IIb311 

(B.12a) 

(B.12b) 

and so on, until we obtain en-l, the last unit vector of the orthogonal set, 
en , being obtained as 

(B.13a) 

Finally, 

(B.13b) 

In the next stage, we represent all vectors of the set {ak }l in orthogonal 
coordinates, i.e., in the base 0 = {ek}I, which are then arranged in an 
mx n array A o . By virtue of the form in which the set { ek }l was defined, 
the last m - k components of vector ak vanish. We thus have, in the said 
orthonormal basis, 

O!lk 

0!2k 

[aklo = O!kk (B.14a) 
0 

0 
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Further, we represent b in 0, thus obtaining 

(B.14b) 

Therefore, eq.(B.l), when expressed in 0, becomes 

au aI2 aln ßI 
0 a22 a2n ß2 

0 0 a nn l~~l ßn 
0 0 0 ßn+l 

(B.15) 

0 0 0 ßm 

whence x can be computed by back-substitution. It is apparent, then, that 
the last m - n equations of the foregoiqg system are incompatible: their 
left-hand sides are zero, while their right-hand sides are not necessarily 
so. What the right-hand sides of these equations represent, then, is the 
approximation error in orthogonal coordinates. Its Euclidean norm is, then, 

(B.16) 

The second method discussed here is based on the application of a chain 
of n reflections {Hk} 1', known as H ouseholder reftections, to both sides of 
eq.(B.l). The purpose of these reflections is, again, to obtain a represen
tation of matrix A in upper-triangular form (Golub and Van Loan, 1989). 
The algorithm proceeds as follows: We assume that we have applied re
flections H I , H 2 , ... , Hk-I, in this order, to A that have rendered it in 
upper-trapezoidal form, i.e., 

A i- I == H i- I ... H 2H IA 

ail ah ai,i-I aii ain 
0 a;2 a;,i_1 a;i a;n 
0 0 aL-I a3i a3n 

0 0 a:-I,i-I a:_I,i a:-I,n 
(B.17) 

0 0 0 a~· .,. ai,n 

0 0 0 a:n,i a:nn 

The next Householder reflection, H i , is determined so as to render the last 
m - i components of the ith column of HiAi - 1 equal to zero, while leaving 



www.manaraa.com

442 B. The Numerical Solution of Linear Algebraic Systems 

its first i - 1 columns unchanged. We do this by setting 

Gi = sgn(a:i)v(aiY + (ai,i+l)2 + ... + (aim)2 

Ui = [0 0 0 aii + Gi ai,i+l aim f 
UiU; 

H i = 1 - 211uil12 

where sgn(x) is defined as +1 if x> 0, as -1 if x< 0, and is left undefined 
when x = O. As the reader can readily verify, 

and hence, the denominator appearing in the expression for H i is calculated 
with one single addition and a single multiplication. It is noteworthy that 
H i , as defined above, is the n x n counterpart of the 3 x 3 pure reflection 
defined in eq.(2.5). As a matter offact, H i reflects vectors in rn-dimensional 
space onto a hyperplane of unit normal udlluill. 

It is important to realize that 

(a) Gi is defined with the sign of aii because ßi is a multiple of the ith 
component of Ui, which is, in turn, the sum of aii and Gi, thereby 
guaranteeing that the absolute value of this sum will always be greater 
than the absolute value of each of its terms. If this provision were 
not made, then the resulting sum could be of a negligibly small ab
solute value, which would thus render ßi a very small positive num
ber, thereby introducing unnecessarily an inadmissibly large roundoff
error amplification upon dividing the product UiU; by ßi; 

(b) an arbitrary vector v is transformed by H i with unusually few flops, 
namely, 

Upon application of the n Hou,seholder reflections thus defined, the sys
tem at hand becomes 

HAx=Hb (B.18) 

with H defined as 
(B.19) 

Similar to that in equation (B.15), the matrix coefficient of x in eq.(B.18), 
i.e., HA, is in upper-triangular form. That is, we have 

HA = [ U ], Hb = [bu ] 
Om'n bL 

(B.20) 
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with Om'n denoting the (m - n) x n zero matrix, m' == m - n, and b u 
and b L being n- and m' -dimensional vectors. The unknown x can thus be 
calculated from eq.(B.18) by back-substitution. 

Note that the last m' components of the left-hand side of eq.(B.18) are 
zero, while the corresponding components of the right-hand side of the 
same equation are not necessarily so. This apparent contradiction can be 
resolved by recalling that the overdetermined system at hand in general has 
no solution. The lower part of b, b L, is then nothing but an m' -dimensional 
array containing the nonzero components of the approximation error in the 
new coordinates. That is, the least-square error, eo, in these coordinates 
takes the form 

(B.2Ia) 

Therefore, 

Ileoll = IlbLil (B.2Ib) 

B.2 The Underdetermined Case 

In this section we study the solution of system (B.I) under the assump
tion that m < n and rank(A) = m. Now, the system under study admits 
infinitely-many solutions, which allows us to impose one condition on a 
specific solution that we may want to obtain. The obvious choice is a mini
mality condition on a norm of x. As in the previous section, the minimiza
tion of the square of the Euclidean norm of x leads to a linear problem, 
and hence, a direct solution of the problem at hand is possible. We thus 
have 

1 
z(x) == 211xll~ ---> mln 

x 
(B.22) 

subject to the constraint represented by eq.(B.l). Since we now have a 
constrained minimization problem, we proceed to its solution via Lagrange 
multipliers. That is, we introduce a new objective function «x), defined as 

«x) == z(x) + AT (Ax - b) ---> min (B.23) 
x 

subject to no constraints, with A defined as an m-dimensional vector of 
Lagrange multipliers, as yet to be determined. We thus have now an un
constrained minimization problem with m+n design variables, the m com
ponents of A and the n components of x, that we group in the (m + 
n)-dimensional vector y == [xT AT]T. The normality condition of the 
foregoing problem can now be stated as 

(B.24a) 
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with Om+n defined as the (m + n)-dimensional zero vector. The above 
condition can be broken down into the two conditions below: 

d( 
-=On 
dx 
d( 
dA =Om 

with Om and On defined, respectively, as the m- and n-dimensional zero 
vectors. The above equations thus lead to 

~~ := x + AT A = On 

d( _ 
- =Ax-b=O dA m 

(B.25) 

(B.26) 

Upon elimination of A from the above system of equations, we obtain 

(B.27) 

which is the minimum-norm solution of the proposed problem. Again, the 
formula yielding the foregoing solution is deceptively simple. If we attempt 
the calculation of the inverse occurring in it, we risk introducing unneces
sarily an inadmissibly ill-conditioned matrix, the product AA T. Therefore, 
an alternative approach to the straight forward implementation of the above 
formula should be attempted, as we do in the subsection below. 

B.2.1 The Numerical Solution 0/ an Underdetermined System 
0/ Linear Equations 

The simplest way of solving this problem is by introducing the m x m 
identity matrix 1, in a disguised manner, between the two factors ofthe left
hand side of eq.(B.l). To this end, we assume that we have an orthogonal 
m x m matrix H, so that 

(B.28) 

equation (B.I) thus becoming 

(B.29a) 

which can be rewritten in the form 

AHTv=b (B.29b) 

with v defined, obviously, as 
v:=Hx (B.29c) 
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Now, H is chosen as the product of m Householder reflections that 
transforms AT into upper-triangular form, i.e., so that 

HAT = [ U ] 
On'rn 

(B.30) 

with On/rn defined as the (n-m) xm zero matrix and n' == n-m. Moreover, 
U is upper-triangular. Further, let us partition v in the form 

(B.31) 

Upon substitution of eqs.(B.30) and (B.31) into eq.(B.29b), we obtain 

where Ornn' is the m x (n - m) zero matrix. Hence, 

(B.32) 

whence it is apparent that VL can attain any value. Now, since v is the 
image of x under an orthogonal transformation, the Euclidean norms of 
these two vectors are identical, and hence, 

(B.33) 

Therefore, if we want to minimize the Euclidean norm of x, the obvious 
choice of VL is zero. Furthermore, from eq.(B.32), 

(B.34) 

and so, 

(B.35) 

with On' denoting the n'-dimensional zero vector, thereby completing the 
numerical solution of the problem at hand. 
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Exercises 

While the foUowing exercises are ordered by chapter, the ordering within 
each chapter does not necessarily correspond to that of the sections within 
the chapter. 

Some of the exercises below caU for algebraic manipulations that are very 
cumbersome and error-prone if done by hand. It is strongly recommended 
that these exercises be worked out using software for computer algebra, 
which is nowadays readily available (Pattee, 1995). On the other hand, some 
problems require numerical computations that most of the time can be done 
by longhand calculations; when these become cumbersome, the reader is 
advised to resort to suitable software, e.g., Matlab and its toolboxes (Etter, 
1993). 

1 An Overview of Robotic Mechanical Systems 

The exercises listed below are meant to familiarize the uninitiated reader 
with the issues involved in robotics, especiaUy in the area of robotic me
chanical systems. A major issue, regrettably very often overlooked, is the 
terminology. In attempting to work out these exercises, the beginner should 
be able to bett er understand the language of robotics and realize that a 
common terminology is not yet available. 

1.1 List a few definitions of machine, say about half a dozen, trying to 
cover the broadest timespan to date. Hint: Denavit and Hartenberg 
(1964) list a few bibliographical references. 
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1.2 Try to give an answer to the question: Are intelligent machines possi
ble'? Express your own ideas and explore what scientists think about 
this controversial issue. Penrose (1994) addresses this issue. 

1.3 What is the difference among machine, mechanism, and linkage? 
In particular, analyze critically the definitions given by authorities, 
such as those found in the most respected dictionaries, encyclope
dias, and archival documents of learned societies, e.g., the complete 
issue of Vol. 26, No. 5 (1991) of Mechanism and Machine Theory on 
terminology. 

1.4 What is artificial intelligence? What is fuzzy logic? Can the tech
niques of these fields be applied to robotics? 

1.5 What is mechatronics? What is the difference between mechatronics 
and robotics? Comerford (1994) and Soureshi, Meckl, and Durfee 
(1994) give an account on this technology. 

1.6 What do you understand as dexterity? The concept of dexterity is 
normally applied to persons. Can it be applied to animals as weIl? 
What about machines? 

1. 7 Define the term algorithm. In this context, make a clear distinction 
between recursion and iteration. Note that in the robotics literature, 
there is often confusion between these two terms in particular. Make 
sure that you do not make the same mistake! Again, Penrose (1994) 
has provided an extensive discussion of the nature of algorithms. 

1.8 What is the difference among terms like real-time, on-line, and run
time? 

1.9 How fast can two floating-point numbers be multiplied using a per
sonal computer? What about using a UNIX workstation? a supercom
puter? Write a piece of code to estimate this time on your computer 
facility. 

1.10 Answer the foregoing quest ion as pertaining to floating-point addi
tion. 

1.11 What is the smallest floating-point number on your computer? Rather 
than looking for the answer in manuals, write a procedure to estimate 
it. 

1.12 What is the difference between conventional programming and object
oriented programming? In terms of programming languages, what is 
the difference between C and C++? Rumbaugh, Blaha, Premerlani, 
Eddy, and Lorensen (1991) provide an introduction to object-oriented 
programming, while Stroustrup (1991) gives an introduction to C++. 
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2.1 Prove that the range and the nullspace of any linear transformation 
L of vector space U into vector space V are vector spaces as well, the 
former of V, the latter of U. 

2.2 Let L map U into V and dim{U} = n, dim{V} = m. Moreover, let R
and N be the range and the nulls pace of L, their dimensions being p 
and l/, respectively. Show that p + l/ = n. 

2.3 Given two arbitrary nonzero vectors u and v in [3, find the matrix 
P representing the projection of [3 onto the subspace spanned by u 
and v. 

2.4 Verify that P, whose matrix representation in a certain co ordinate 
system is given below, is a projection. Then, describe it geometri
cally, i.e., identify the plane onto which the projection takes place. 
Moreover, find the nullspace of P. 

[P] = ~ [i ~ ~1l 
3 -1 1 2 

2.5 If for any 3-dimensional vectors a and v, matrix A is defined as 

then we have 

A = o(a x v) 
- 8v 

AT==o(vxa) 
ov 

Show that A is skew-symmetric without introducing components. 

2.6 Let u and v be any 3-dimensional vectors, and define T as 

T == l+uvT 

The (unit) eigenvectors of T are denoted by Wb W2, and W3. Show 
that, say, WI and W2 are any unit vectors perpendicular to v and 
different from each other, whereas W3 = u/llull. Also show that the 
corresponding eigenvalues, denoted by Al, A2, and A3, associated with 
WI, W2, and w3, respectively, are given as 

2.7 Show that if u and v are any 3-dimensional vectors, then 

det(l + uvT ) = 1 + u . v 

Hint: Use the results of the foregoing exercise. 
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2.8 For the two unit vectors e and f in 3-dimensional space, define the 
two reflections 

Now, show that Q = R 1R 2 is a rigid-body rotation, and find its axis 
and its angle of rotation in terms of unit vectors e and f. Again, no 
components are permitted in this exercise. 

2.9 State the conditions on the unit vectors e and f, of two reflections R 1 

and R 2 , respectively, under which a given rotation Q can be factored 
into the reflections R 1 and R 2 given in the foregoing exercise. In 
other words, not every rotation matrix Q can be factored into those 
two reflections, for fixed e and f, but special cases can. Identify these 
cases. 

2.10 Prove that the eigenvalues of the cross-product matrix of the unit 
vector e are 0, j, and -j, where j = A. Find the corresponding 
eigenvectors. 

2.11 Without resorting to components, prove that the eigenvalues of a 
proper matrix Q are 1, ej 4>, and e- j 4>. 
Hint: Use the result oj the joregoing exercise and the Cayley-Hamilton 
Theorem. 

2.12 Find the axis and the angle of rotation of the proper orthogonal 
matrix Q given below in a certain coordinate frame. 

[Ql=~ 
3 

2.13 Find E and cP of the exponential representation of Q, for Q given as 
in Exercise 2.12. 

2.14 Cayley's Theorem, which is not to be confused with the theorem of 
Cayley-Hamilton, states that every 3 x 3 proper orthogonal matrix 
Q can be uniquely factored as 

Q = (1 - S)(1 + S)-1 

where S is a skew-symmetric matrix. Find a general expression for S 
in terms of Q, and state the condition under which this factoring is 
not possible. 

2.15 Find matrix S of Cayley's factoring for Q as given in Exercise 2.12. 
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2.16 If Q represents a rotation about an axis parallel to the unit vector e 
through an angle </>, then the Rodrigues vector p of this rotation can 
be defined as 

Note that if rand ro denote the Euler-Rodrigues parameters of the 
rotation under study, then p = rlro. Show that 

p = -vect(S) 

for S given in Exercise 2.14. 

2.17 The vertices of a cube, labeled A, B, ... , H, are located so that A, 
B, C, and D, as weIl as E, F, G, and H, are in clockwise order when 
viewed from outside. Moreover, AE, BH, CG, and DF are edges of 
the cube, which is to be manipulated so that a mapping of vertices 
takes place as indicated below: 

A --> D, 
E --> A, 

B --> C, 
F --> E, 

C --> G, 
G --> H, 

Find the angle of rotation and the angles that the axis of rotation 
makes with edges AB, AD, and AE. 

2.18 (Euler angles) A rigid body can attain an arbitrary configuration 
starting from any reference configuration, 0, by means of the compo
sition of three rotations about co ordinate axes, as described below: 
Attach axes X o, Yo, and Zo to the body in the reference configuration 
and rotate the body through an angle </> about Zo, thus carrying the 
axes into Xl, YI , and Zl (=Zo), respectively. Next, rotate the body 
through an angle 0 about axis YI , thus carrying the axes into X 2 , 

Y2, and Z2, respectively. Finally, rotate the body through an angle 'lj; 
about Z2 so that the axes coincide with their desired final orientation, 
X 3, Y3, and Z3. Angle 'lj; is chosen so that axis Z3 lies in the plane of 
Zo and Xl, whereas angle 0 is chosen so as to carry axis Zl (=Zo) 
into Z3 (=Z2). Show that the rotation matrix carrying the body from 
configuration 0 to configuration 3 is: 

[ 
cOc</>c'lj; - s</>s'lj; 

Q = cOs</>c'lj; + c</>s'lj; 
-sOc'lj; 

-cOc</>s'lj; - s</>c'l/J sOc</> 1 
-cOs</>s'lj; + c</>c'lj; sOs</> 

sOs'lj; c() 

where c(·) and s(·) stand for cos(·) and sin(·), respectively. Moreover, 
show that the angle of rotation of Q given above, 0:, obeys the relation 

cos (~) = cos ('lj; ~ </» cos (~) 
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2.19 Given an arbitrary rigid-body rotation about an axis parallel to the 
unit veetor e through an angle <p, it is possible to find both e and <p 
using the linear invariants of the rotation matrix, as long as the veetor 
invariant does not vanish. The latter happens if and only if <p = 0 or 
7L Now, if<p = 0, the associated rotation matrix is the identity, and 
e is any 3-dimensional veetor; if <p = 7r, then we have 

Q(7r) == Q7r = -1 + 2eeT 

whenee we ean solve for eeT as 

T 1 
ee = 2(Q7r + 1) 

Now, it is apparent that the three eigenvalues of Q7r are real and the 
associated eigenveetors are mutually orthogonal. Find these. 

2.20 Explain why all the off-diagonal entries of a symmetrie rotation ma
trix cannot be negative. 

2.21 The three entries above the diagonal of a 3 x 3 matrix Q that is 
supposed to represent a rotation are given below: 

1 
ql2 = 2' 

3 
q23 =-

4 

Without knowing the other entries, explain why the above entries are 
unaeeeptable. 

2.22 Let PI, P2, and P3 be the position veetors of three arbitrary points 
in 3-dimensional spaee. Now, define a matrix Pas 

Show that P is not frame-invariant. Hint: Show, fOT example, that it 
is always possible to find a coordinate frame in which tr(P) vanishes. 

2.23 For P defined as in Exercise 2.22, let 

Show that q vanishes if the three given points are eollinear for P 
represented in any coordinate frame. 

2.24 For P defined, again, as in Exercise 2.22, show that ppT is frame
invariant and beeomes singular if and only if the three given points 
are eollinear. Note that this matrix is more singularity-robust than 
P. 

2.25 The diagonal entries of a rotation matrix are known to be -0.5, 0.25, 
and -0.75. Find the off-diagonal entries. 
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z y 

F 

FIGURE 1. A cube in two different configurations. 

2.26 As a generalization to the foregoing exercise, discuss how you would 
go about finding the off-diagonal entries of a rotation matrix whose 
diagonal entries are known to be a, b, and c. Hint: This problem can be 
lormulated as finding the intersection 01 the coupler curue 01 a lour
bar spherical linkage (Chiang, 1988), which is a curue on a sphere, 
with a certain parallel 01 the same sphere. 

2.27 Shown in Fig. l(a) is a cube that is to be displaced in an assembly 
operation to a configuration in which face EFGH lies in the XY 
plane, as indicated in Fig. l(b). Compute the unit vector e parallel 
to the axis of the rotation involved and the angle of rotation cjJ, for 
o 5:. cjJ 5:. 'Ir. 

2.28 The axes Xr, Yr, Z1 of a frame :Fi are attached to the base of a 
robotic manipulator, whereas the axes X 2 , Y2 , Z2 of a second frame 
F 2 are attached to its end-effector, as shown in Fig. 2. Moreover, the 
origin P of F2 has the F1-coordinates (1, -1, 1). Furthermore, the 
orientation of the end effector with respect to the base is defined by 
a rotation Q, whose representation in F 1 is given by 

1 [1 1 -.;3 1 + .;3] 
[Qh ="3 1 + .;3 1 1 - .;3 

1-.;3 1+.;3 1 

(a) What are the end-effector coordinates of point C of Fig. 2? 

(b) The end-effector is approaching the ABC plane shown in Fig. 2. 
What is the equation of the plane in end-effector coordinates? 
Verify your result by substituting the answer to (a) into this 
equation. 
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FIGURE 2. Robotic EE approaching a stationary object ABC. 

2.29 Shown in Fig. 3 is a cube of unit side, which is composed of two 
parts. Frames (Xo, Yo, Zo) and (Xl, YI , Zl) are attached to each of 
the two parts, as illustrated in the figure. The second part is going 
to be picked up by a robotic gripper as the part is transported on a 
belt conveyor and passes elose to the stationary first part. Moreover, 
the robot is to assemble the cube by placing the second part onto the 
first one in such a way that vertices Al, BI, Cl are coincident with 
vertices Ao, Bo, Co. Determine the axis and the angle ofrotation that 
will carry the second part onto the first one as described above. 

2.30 A piece of code meant to produce the entries of rotation matrices is 
being tested. In one run , the code produced a matrix with diagonal 
entries -0.866, -0.866, -0.866. Explain how without looking at the 
other entries, you can decide that the code has a bug. 

2.31 Shown in Fig. 4 is a rigid cube of unit side in three configurations. The 
second and the third configurations are to be regarded as images of 
the first one. One of the last two configurations is a reflection, and the 
other is a rotation of the first one. Identify the rotated configuration 
and find its associated invariants. 
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FIGURE 3. Roboticized assembly operation. 
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FIGURE 4. Three configurations of a cube. 

(c) 

2.32 Two frarnes, 9 and C, are attached to a robotic gripper and to a 
carnera rnounted on the gripper, respectively. Moreover, the carnera 
is rigidly attached to the gripper, and hence, the orientation of C with 
respect to Q, denoted by Q, remains constant under gripper motions. 
The orientation of the gripper with respect to a frame B fixed to 
the base of the robot was measured in both Q and C. Note that this 
orientation is measured in Q simply by reading the joint encoders, 
which report values of the joint variables, as discussed in detail in 
Chapter 4. The same orientation is measured in C from estimations 
of the coordinates of a set of points fixed to B, as seen by the camera. 

Two measurements of the above-mentioned orientation, denoted R 1 

and R 2 , were taken in Q and C, with the numerical values reported 
below: 

[ 
0.667 

[R1]g = -0.667 
-0.333 

0.333 
0.667 

-0.667 

0.667] 
0.333 , 
0.667 
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[
0.500 0 -0.866] 

[Rdc = 0 1.000 0 , 
0.866 0 0.500 

[ 
0.707 0.577 0.408] 

[R2 ]g = 0 0.577 -0.816 , 
-0.707 0.577 0.408 

[R2 lc = [~ 0.~46 -0~938] 
o 0.938 0.346 

(a) Verify that the foregoing matrices represent rotations. 

(b) Verify that the first two matrices represent, in fact, the same 
rotation R 1, albeit in different coordinate frames. 

(c) Repeat item (b) for R 2 • 

(d) Find [Q]g. Is your computed Q orthogonal? If not, what is the 
error in the computations? Note that you may have encountered 
here a problem of roundoff error amplification, which can be 
avoided if a robust computational scheme is used. As a matter 
of fact, a robust method in this case can be devised by resorting 
to the Gmm-Schmidt orthogonalization procedure, as outlined in 
Appendix B. 

2.33 The rotation Q taking a coordinate frame B, fixed to the base of a 
robot, into a coordinate frame g, fixed to its gripper and the position 
vector g of the origin of 9 have the representations in B given below: 

1 [1 1 - v'3 1 + v'3] 
[ Q]B = 3 1 + v'3 1 1 - v'3 , 

I-v'3 1+v'3 1 
[1-v'3] [g]B = v'3 
1 + v'3 

Moreover, let p be the position vector of any point P of the 3-
dimensional space, its coordinates in B being (x, y, z). The robot is 
supported by a cylindrical column C of circular cross section, bounded 
by planes II, and II2 • These are given below: 

C: x 2 + y2 = 4; II1: z = 0; II2 : z = 10 

Find the foregoing equations in 9 coordinates. 

2.34 A certain point of the gripper of a robot is to trace an elliptical path 
of semiaxes a and b, with center at C, the centroid of triangle PQR, 
as shown in Fig. 5. Moreover, the semiaxis of length a is parallel to 
edge PQ, while the ellipse lies in the plane of the triangle, and all 
three vertices are located a unit distance away from the origin. 
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y 

x 

FIGURE 5. An elliptical path on an inclined plane. 

(a) For b = 2a/3, the gripper is to keep a fixed orientation with 
respect to the unit tangent, normal, and binormal vectors of the 
ellipse, denoted by et, en , and eb, respectively. Determine the 
matrix representing the rotation undergone by the gripper from 
an orientation in which vector et is parallel to the coordinate axis 
X, while en is parallel to Y and eb to Z. Express this matrix in 
X, Y, Z coordinates, if the equation of the ellipse, in parametric 
form, is given as 

X' = acoscp, y' = bsincp, z' = 0 

the orientation of the gripper thus becoming a function of cp. 

(b) Find the val ue of cp for w hich the angle ofrotation of the gri pper , 
with respect to the coordinate axes X, Y, Z, becomes 11". 

3 Fundamentals of Rigid-Body Mechanics 

3.1 The cube of Fig. 6 is displaced from configuration AB ... H into 
configuration A' B' ... H' . 

(a) Determine the matrix representing the rotation Q undergone by 
the cube, in X, Y, Z coordinates. 
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FIGURE 6. Motion of a cube. 
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y 

(b) Find the Plücker coordinates of line .c of the cube undergoing 
displacements of minimum magnitude. 

(c) Find the interseetions of .c with the coordinate planes. 

3.2 Two unit forces, f l and f2 , are applied to the regular tetrahedron of 
unit-Iength edges displayed in Fig. 7 in such a way that f l is directed 
from P2 to P3 , whereas f2 is directed from P4 to PI. The effect of 
the foregoing system of forces on the rigid tetrahedron is obtained 
by application of the resultant of the two forces on a certain point 
P and a moment ll. Find the location of point P lying dosest to P4 

that will make the magnitude of II aminimum. 

3.3 The moment of a li ne .cl about a second li ne .c2 is a scalar J.L defined 
as 

where III is the moment of .cl ab out an arbitrary point P of .c2 , while 
e2 is a unit vector parallel to line .c2 . 

Show that the locus of alllines .c intersecting three given lines { .ck H 
is a quadric surface, i.e., a surface defined by a function that is 
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x 

FIGURE 7. A regular tetrahedron. 

quadratic in the position vector of a point of the surface. Hint: Note 
that the moment of any line of { Lk H with respect to L vanishes. 

Note: The quadric surface above is, in fact, a ruled surface, namely, 
a one-sheet hyperboloid. 

3.4 A robotic gripper is provided with two redundant sensors that are 
meant to measure a wrench acting on the gripper. The ith sensor, 
moreover, has its own coordinate frame, labeled F i , for i = 1,2. 
Sensor i reported the ith measurement of the wrench Wp, where 
subscript P indicates that the force is applied at point P, as [wp Ji == 
[nT, fTJf, for i = 1,2. These measurements are given as 

(a) Show that the measurements are compatible, based on invari
ance arguments. 

(b) Determine the relative orientation ofthe two frames, i.e., find the 
rotation matrix transforming F 2-coordinates into F 1 -coordinates. 

3.5 In calibrating a robot, the Plücker coordinates of one of its axes are to 
be determined in a given co ordinate frame. To this end, the moment 
of this axis is measured with respect to two points, A and B, of 
position vectors [a J = [1, 0, ° V and [b J = [0, 1, 1 V, respectively. 
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The said moments, nA and nB, respectively, are measured as 

[nBI ~ m 
with all entries given in meters. 

(a) Determine the unit vector e defining the direction of the axis 
under discussion. 

(h) Find the coordinates of the point P* of the axis that lies dosest 
to the origin 

(c) Find the Plücker coordinates of the axis ahout the origin, Le., the 
Plücker coordinates of the axis in which the moment is defined 
with respect to the origin. 

3.6 The gripper g of a rohot is approaching a workpiece B, as indicated 
in Fig. 8, with planes II1 and II2 parallel to each other and normal to 
II3 . The workpiece is made out of a cuhe of unit length from which 
two vertices have heen removed, therehy producing the equilateral 
triangular faces D E Fand D' E' F'. Moreover, two coordinate frames, 
F (X, Y, Z) and F' (X', Y', Z'), are defined as indicated in the 
figure, in which Y is, apparently, parallel to line D' C'. 

lt is required to grasp B with g in such a way that planes II1 and II2 

coincide with the triangular faces, while carrying the Y' axis to an 
orientation perpendicular to the diagonal CC' of B. More concretely, 
in the grasping configuration, frame F' is carried into F" (X", Y", 
and Z"), not shown in the figure, in such a way that unit vectors i", 
j", k", parallel to X", Y", Z", respectively, are oriented so that i" has 
all three of its F-components positive, while j" has its Z-component 
positive. 

(a) Compute the angle of rotation of the motion undergone hy g 
from a pose in which F' and F have identical orientations, 
termed the reference pose, and find the unit vector parallel to 
the axis of rotation, in frame F. 

(h) The position vector of point P of g is known to he, in the 
reference pose, 

[p lF = [ ~11 
0.25 

Determine the set of points of g undergoing a displacement 
of minimum magnitude, under the condition that P, in the 
displaced configuration of g, coincides with C'. 
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FIGURE 8. A workpiece B to be grasped by a gripper Q. 

3.7 A robot-calibration method has been proposed that allows us to de
termine the location of a joint axis, C, via the Plücker coordinates 
of the axis in a coordinate frame fixed to the gripper. The Plücker 
coordinates are given as 7r.c = [eT , n T jT. 

(a) Show that the distance of the axis to the origin of the gripper
fixed coordinate frame, d, can be determined as d = linII. 

(b) Show that the point p. on the axis, which lies dosest to the 
above-mentioned origin, has a position vector p. given as 

p. = e x n 

(c) From measurements on a robot, the Plücker coordinates were 
estimated, in a gripper-fixed frame Q, as 

[7r.c]g = [-../2/2, 0, ../2/2, 0, -../2, 0 jT 

Find d and p. in gripper coordinates 

3.8 Prove that for any 3-dimensional vectors w and p, 

w x (w x··· (w x (w xp))···) = (_I)k(llwIl2k l_lIwIl2(k-1)wwT )p , , 
v 

2k factors 

W X (w x··· (w x (w xp))···) = (_I)k(lIwIl 2kw) X P , , 
v 

2k+l factors 

3.9 A rectangular prism with regular hexagonal bases whose sides are 
25 mm long and whose height is 150 mm is to undergo a pick-and
place operation-See Chapter 5 to understand what this means-that 
requires knowledge of its centroid Iocation and its moment-of-inertia 
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matrix. Find the centroidal principal axes and moments of inertia 
under the assumption that the prism is made from a homogeneous 
material. 

3.10 The prism of Exercise 3.9 now undergoes a machining process cutting 
it into two parts, which are separated by a plane that contains one 
of the edges of the base and makes an angle of 45° with the axis of 
the prism. Find the centroidal principal axes and moments of inertia 
of each of the two parts. 

3.11 In Exercise 2.22 assurne that a mass m is located at every point Pi 
of position vector Pi. Give a mechanical interpretation of the matrix 
m[tr(ppT )l-PpT ], with P defined in the above-mentioned exercise. 

3.12 The centroidal inertia matrix of a rigid body is measured by two 
observers, who report the two results below: 

Show that the two measurements are acceptable. (Hint: Use invari
an ce arguments.) 

3.13 State the conditions under wh ich a point and the mass center of a 
rigid body share the same principal axes of inertia. In other words, let 
I p and Ie be the moment-of-inertia matrices of a rigid body about 
a point P and its mass center, C, respectively. State the conditions 
under which the two matrices have common eigenvectors. Moreover, 
under these conditions, what are the relationships between the two 
sets of principal moments of inertia? 

3.14 Show that the smallest principal moment of inertia of a rigid body 
attains its minimum value at the mass center. 

3.15 Show that the time-rate of change of the inertia dyad M of a rigid 
body is given by 

M=WM-MW 

Then, recall that the extended momentum J.L is defined as 

J.L == Mt 

where t is the twist ofthe body, defined at its mass center. Now, with 
the above expression for M, show that 

jJ, = Mt + WMt 
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3.16 A wrench w T = [nT fT]T, with f acting at point P of the gripper of 
Fig. 2, is measured by a six-axis force sensor, to which a frame Fs is 
attached, as indicated in that figure. If points P and S lie a distance 
of 100 mm apart, find the wrench in F 2 , when the readouts of the 
sensor are 

[n[s~ m Nm, [f[s~ m N 

4 Kinetostatics of Simple Robotic Manipulators 

Exercises 4.22 to 4.27 below pertain to Section 4.9. They are thus 
to be assigned only if this section was covered either in dass or 
as a reading assignment. 

4.1 Shown in Fig. 8.8 is the kinematic chain of one of the six-dof legs 
of a flight simulator, such as that appearing in Fig. 1.5. The HD 
parameters of this manipulator are displayed in Table 8.5. In that 
figure, M is the moving platform to which an aircraft cockpit is rigidly 
attached. The six-dof motion of M is controlled by means of the 
hydraulic cylinder indicated in the same figure as a prismatic pair. 
Find all inverse kinematics solutions of this manipulator, relating the 
pose of M with all the joint variables. 

4.2 Modify the inverse-kinematics solution procedure of Section 4.3 to 
obtain all the postures of a P RR manipulator that give the same 
EE pose, and show that this problem leads to a quartic polynomial 
equation. 

4.3 Repeat Exercise 4.2 as pertaining to a P RP manipulator. 

4.4 The manipulator appearing in Fig. 9 is of the orthogonal type, with a 
decoupled, spherical wrist, and a regional structure consisting of two 
parallel axes and one axis perpendicular to these two. In that figure, 
rectangles denote revolutes ofaxes lying in the X1-Z1 plane, while 
circles with dots indicate revolutes with axes normal to the plane of 
the figure. Find all inverse kinematics solutions for arbitrary poses of 
the EE of this manipulator. 

4.5 Similar to the manipulator of Fig. 9, that of Fig. 10 is of the orthog
onal, decoupled type, except that the latter has a prismatic pair. For 
an arbitrary pose of its EE, find all inverse kinematics solutions of 
this manipulator. For a description of the meaning of the rectangles 
and the circles with dots inside, see Exercise 4.4. 
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FIGURE 9. A six-revolute robot holding a heavy tool. 

4.6 Derive expressions for the angle of rotation and the unit vector par
allel to the axis of rotation of matrices Qi, as introduced in the 
Denavit-Hartenberg notation of Section 4.2. 

4.7 The robotic manipulator of Fig. 9 is instrumented with sensors mea
suring the torque applied by the motors at the joints. Two readouts 
are taken of the sensors for the robot in the configuration indicated 
in the figure. In the first readout, the gripper is empty; in the second, 
it holds a tool. If the first readout is subtracted from the second, the 
vector difference D.:r is obtained as 

D.r = [0 2 1 0 1 of Nm 

With the foregoing information, determine the weight W of the tool 
and the distance d of its mass center from C, the center of the spher
ical wrist. For a description of the meaning of the rectangles and the 
circles with dots inside, see Exercise 4.4. 

4.8 A planar three-axis manipulator is s40wn in Fig. 11, with al = a2 = 
a3 = 1 m. When a wrench acts onto the EE of this manipulator, the 
joint motors exert torques that keep the manipulator under static 
equilibrium. Readouts of these joint torques are recorded when the 
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FIGURE 10. ABB-IRB 1000 robotic manipulator. 

manipulator is in the posture (h = ()2 = ()3 = 450 , namely, 

Tl = -../2 Nm, T2 = -../2 Nm, T3 = 1-../2 Nm 

Calculate the above-mentioned wrench. 

4.9 Shown in Fig. 12 is a computer-generated model of DIESTRO, the 
robot displayed in Fig. 4.31, with a slightly modified EE. The Denavit
Hartenberg parameters of this robot are given in Table 1. Find the 
Jacobian matrix of the manipulator at the above configuration. 

TABLE 1. DH Parameters of the Modified DIESTRO 

i ai (mm) bi (mm) Oi Bi 
1 50 50 90° 90° 
2 50 50 -900 -900 

3 50 50 900 900 

4 50 50 -900 -90° 
5 50 50 90° 90° 
6 0 50 -900 _90° 
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4.10 An orthogonal spherical wrist has the architecture shown in Fig. 4.18, 
with the DH parameters 

A frame F 7 is attached to its EE so that Z7 coincides with Z6' Find 
the (Cartesian) orientation that can be attained with two inverse 
kinematics solutions () land () I I, defining the two distinct postures, 
that lie the farthest apart. Note that a distance between two manipu
lator postures can be defined as the radical of the quadratic equation 
yielding the two inverse kinematic solutions of the wrist, whenever 
the radical is positive. Those postures giving the same EE orienta
tion and lying farthest from each other are thus at the other end of 
the spectrum from singularities, where the two postures merge into 
a single one. Hence, the postures lying farthest from each other are 
singularity-robust. 

4.11 For the two postures found in Exercise 4.10, the EE is to move with 
an angular velo city w = [Wl, W2, W3V S-1. Show that if IIwll remains 

P(x,y) 

FIGURE 11. A planar three-axis manipulator. 
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constant, then so does IIÖII, for Ö defined as the joint-rate vector of 
the wrist. 

4.12 Point P of the manipulator of Fig. 4.15 is to move with a velocity 
v in the posture displayed in that figure. Show that as long as Ilvll 
remains constant, so does IIÖII, for Ö defined as the joint-rate vector. 
Moreover, let us assume that in the same posture, point P is to attain 
a given acceleration a. In general, however, IIÖII, where Ödenotes the 
corresponding joint-acceleration vector, does not necessarily remain 
constant under a constant Ilall. Under which conditions does Ilall 
remain constant for a constant 11 Ö II? 

4.13 A load f is applied to the manipulator of Fig. 4.15 in the post ure 
displayed in that figure. Torque cells at the joints are calibrated to 
supply torque readouts resulting from this load only, and not from 
the dead load-its own weight-of the manipulator. Show that under 
a constant-magnitude load, the magnitude of the joint-torque vector 
remains constant as weIl. 

FIGURE 12. A six-revolute manipulator. 
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4.14 Dialytic elimination. The characteristic polynomial of decoupled 
manipulators for positioning tasks can be derived alternatively via 
dialytic elimination, as introduced in Subsection 4.5.3. It is recalled 
here that dialytic elimination consists in eliminating one unknown 
from a system of polynomial equations by expressing this system in 
linear homogeneous form, whereby each equation is a linear combi
nation of various successive powers of the unknown to be eliminated, 
including the zeroth power. This elimination can be achieved as out
lined below: Express cosfh and sinfh in terms of tan((h/2) == tI, 
thereby obtaining 

(C C3 + D S3 + E - A) t~ + 2 B h + (C C3 + D S3 + E + A) = 0 

(H C3 + I S3 + J - F) t~ + 2 Gtl + (H C3 + I S3 + J + F) = 0 

which can be furt her expressed as 

mt~+2Bh+n=0 
p t~ + 2 G t l + q = 0 

with obvious definitions for coefficients m, n, p, and q. Next, both 
sides of the two foregoing equations are multiplied by h, thereby 
producing 

I mt~+2Bt~+nh=0 
pt~+2Gt~+qtl =0 

Now, the last four equations can be regarded as a system of linear 
homogeneous equations, namely, 

where 0 is the 4-dimensional zero vector, while M is a 4 x 4 matrix, 
and t 1 is a 4-dimensional vector. These are defined as 

[
0 m 2B n] o p 2G q 
m 2B n 0 
p 2G q 0 

t, = [:J] 
Clearly, then, t 1 -I- 0, and hence, M must be singular. The charac
teristic polynomial sought, then, can be derived from the condition 

det(M) = 0 

Show that the last equation is quadratic in cos 03 and sin °3 . Hence, 
the foregoing equation should lead to a quartic equation in tan(03/2). 
Derive the quartic equation involved. Hint: Do not do this by hand, 
for it may be too time-consuming and could quickly lead to algebmic 
mistakes. Use software for symbolic computations instead. 
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4.15 Given an arbitrary three-revolute manipulator, as shown in Fig. 4.9, 
its singular postures are eharaeterized by the existenee of a line pass
ing through its operation point about whieh the moments of its three 
axes vanish-see Exereise 2.3. Note that this eondition ean be read
ily applied to manipulators with a simple arehiteeture, whereby two 
sueeessive axes interseet at right angles and two others are parallel. 
However, more eomplex arehiteetures, like that of the manipulator 
of Fig. 4.13, are more elusive in this regard. Find the line passing 
through the operation point and intersecting the three axes of the 
manipulator of Fig. 4.13 at a singularity. Hint: A singular posture of 
this manipulator was found in Example 4.4.2. 

4.16 A robot of the Puma type has the arehiteeture displayed in Fig. 4.3, 
with the numerical values a2 = 0.432 m, b2 = 0.149 m, b4 = 0.432 m. 
Find its maximum reaeh. Then, find the value of the link length a of 
the manipulator of Fig. 4.15 that gives the same reaeh as this robot. 

4.17 Compute the workspaee volume of the manipulator of Fig. 4.3. Here, 
you ean exploit the axial symmetry of the workspaee by reealling the 
Pappus-Guldinus Theorems--see any book on multivariable ealculus
that yield the volume as 27rq, with q defined as the first moment of 
the eross-seetion, whieh is displayed in Fig. 4.22b, with respeet to the 
axis of symmetry, Zl. To this end, all you have to do is look for the 
area of a half-ellipse and the loeation of its eentroid. This informa
tion is tabulated in books on elementary meehanics or multivariable 
ealculus (a.k.a. advaneed ealculus). 

4.18 Compute the workspace volume of the manipulator of Fig. 4.15, whose 
workspaee is sketehed in Fig. 4.23. Here, you ean also use the Pappus
Guldinus Theorem, as suggested in Exercise 4.17. However, the first 
moment of the eross-seetion has to be determined numerically, for 
the area properties of the eurve that generates the 3-dimensional 
workspaee are not tabulated. Now, for two manipulators, the Puma
type and the one under diseussion, with the same reaeh, determine 
whieh one has the larger workspaee. Note: This exercise is not more 
difficult than others, but it requires the use of suitable software for the 
calculation of area properties of planar regions bounded by arbitmry 
curves. Unless you have access to such a piece of software, do not 
attempt this exercise. 

4.19 Shown in Fig. 10 is the kinematie ehain of the ABB-IRB 1000 robotie 
manipulator, which eontains five revolutes and one prismatic pair. A 
revolute is represented either as a rectangle or as a circle, depending 
on whether its axis lies in the plane of the figure or is perpendieular 
to it. The prismatie pair is represented, in turn, as a dashpot. 
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(a) Determine the manipulator Jacobian in the Xl, Yb Zl coordi
nate frame shown in the figure. 

(b) Determine the twist of the end-effector, defined in terms of the 
velo city of point P, for unit values of all joint-rates, and the 
post ure displayed in the same figure. 

(c) Determine the joint accelerations that will produce a vanishing 
acceleration of the point of intersection, C, of the three wrist 
axes and a vanishing angular acceleration of the gripper, for the 
unit joint rates given before. 

4.20 The robot in Fig. 10 is now used for adeburring task. When the robot 
is in the configuration shown in that figure, a static force fand no 
moment acts on point P of the deburring tool. This force is sensed 
by torque sensors placed at the joints of the robot. Assurne that the 
readings of the arm joints are Tl = 0, T2 = 100 Nm, and T3 = 50 N. 

(a) Find the force f acting at P. 

(b) Find the readings of the torque sensors placed at the wrist joints. 

4.21 A decoupled manipulator is shown in Fig. 8.8 with the DH parameters 
of Table 8.5 in an arbitrary posture. 

(a) Find the Jacobian matrix of this manipulator at aposture with 
axis Xl vertical and pointing downwards, while Z2 and Y1 make 
an angle of 1800 • Moreover, in this particular posture, Z3 and 
Z4 are vertical and pointing upwards, while Z7 makes an angle 
of 1800 with Y1 . 

(b) At the posture described in item (a), compute the joint-rates 
that will produce the twist 

(c) A wrench given by a moment n and a force f applied at point 
P acts on the EE of the same manipulator at the post ure de
scribed in item (a) above. Calculate thejoint torques or moments 
required to balance this wrench, which is given by 

4.22 Show that the maximum manipulability J.L = Jdet(JJT) of an or
thogonal spherical wrist is attained when all three of its axes are 
mutually orthogonal. Find that maximum value. 
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4.23 Find an expression for the condition number of a three-revolute spher
ical wrist of twist angles Q1 and Q2 and show that this number de
pends only on Q1, Q2, and the intermediate joint angle, 82 , Moreover, 
find values of these variables that minimize the condition number of 
the manipulator. 

4.24 For the manipulator of Fig. 11, with the dimensions of Exercise 4.8, 
find the characteristic length, as defined in Section 4.9. 

4.25 Manipulability of decoupled manipulators. Let J-la and J-lw rep
resent the manipulability of the arm and the wrist of a decoupled 
manipulator, i.e., 

with J 12 and J 21 defined in Section 4.5. Show that the manipulability 
J-l of the overall manipulator is the product of the two manipulabilities 
given above, i.e., 

J-l = J-laJ-lw 

4.26 Consider a planar two-revolute manipulator with link lengths a1 and 
a2. Find an expression of the form ",(r,82) for the condition number 
of its Jacobian, with r = a2/a1, and establish values of rand 82 that 
minimize "', which reaches a minimum value of unity. 

4.27 Shown in Fig. 4.29 is an orthogonal three-revolute manipulator with 
an isotropie Jacobian. Find the volume of its workspace. Now consider 
a second manipulator with a similar orthogonal architecture, but with 
more common dimensions, Le., with links of equallength A. If the two 
manipulators have the same reach, that is, if 

A= l+V2 Z 
2 

find the volume of the workspace of the second manipulator. Finally, 
determine the KCI-see Section 4.9 for adefinition of this term-of 
the second manipulator. Draw some conclusions with regard to the 
performance of the two manipulators. 

5 Trajectory Planning: Pick-and-Place Operations 

5.1 A common joint-rate program for piek-and-place operations is the 
trapezoidal profile of Fig. 13, whereby we plot Si (T) vs. T, using the 
notation introduced in Chapter 5, Le., with S(T) and T defined as 
dimensionless variables. Here, Si (T) starts and ends at O. From its 
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start to a value Tl, s' (T) grows linearly, until reaching a maximum 
s~ax; then, this function remains constant until a value T2 is reached, 
after which the function decreases linearly to zero at the end of the 
interval. 

Clearly, this profile has a discontinuous acceleration and hence, is 
bound to produce shoek and vibration. However, the profile ean be 
smoothed with a spline interpolation as indieated below. 

(a) Find the value of s~ax in terms of Tl and T2 so that s(O) = 0 
and s(l) = 1. 

(b) Plot SeT) with the value of s~ax found above and decompose it 
into a linear part SI(T) and a periodic part Sp(T). 

(e) Sampie s( T) with N equally spaeed points and find the periodic 
spline that interpolates Sp(T), for Tl = 0.2 and T2 = 0.9. Try 
various values of N and ehoose the one that (a) is the smallest 
possible, 9b) gives a 'good' approximation of the original SeT), 
and (e) yields the best-behaved aeeeieration program, i.e., an ae
eeleration profile that is smooth and within reasonable bounds. 
Discuss how you would go about defining a reasonable bound. 

5.2 An alternative approach to the solution of the foregoing smoothing 
problem eonsists of solving an inverse interpolation problem: Plot 
the aceeleration program of the foregoing joint-rate plot, S"(T). Now, 
sampie a set of N equally spaced points of s" (T) and store them in 
an N-dimensional array s". Next, find the ordinates of the support
ing points of the interpolating periodic spline and store them in an 
array s of suitable dimension. Note that s" does not eontain infor
mation on the linear part of SeT). You will have to modify suitably 
your array s so that it will produee the eorreet abseissa values of the 
interpolated eurve SeT), with s(O) = 0 and s(l) = 1. Moreover, SeT) 

, 
Smax 

FIGURE 13. A trapezoidal joint-rate profile. 

T 
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must be monotonic. Try various values of N and choose the smallest 
one that gives a well-behaved acceleration program, as described in 
Exercise 5.1. 

5.3 One more approach to smoothing the joint-rate profile of Fig. 13 is 
to use cycloidal motions. To this end, define a segment of a cycloidal
motion function between 7 = 0 and 7 = 71, so that s'(7d = s~ax, 
for s~ax as indicated in the same figure. Further , define a similar 
segment between 7 = 72 and 7 = 1 so that S'(72) = s~ax and s'(l) = 
O. Then, join the two segments with a line of slope s~ax. Plot the 
displacement, velo city, and acceleration ofthe smoothed motion. Note 
that the smoothed profile must meet the end conditions s(O) = 0 and 
s(l) = 1, and that you may have to introduce a change of variable to 
shrink the corresponding s' ( 7) segment to meet these conditions. 

5.4 A pick-and-place operation involves picking objects from a magazine 
supplied with an indexing mechanism that presents the objects with 
a known pose and zero twist, at equal time-intervals T, to a robot, 
which is to place the objects on a belt conveyor running at a constant 
speed Vo. Find 5th- and 7th-degree polynomials that can be suitably 
used to produce the necessary joint-variable time-histories. 

5.5 Repeat Exercise 5.4 if now, the objects are to be picked up by the 
robot from a belt conveyor traveling at a constant velo city VI and 
placed on a second belt conveyor traveling at a constant velo city V2. 

Moreover, let PI and P2 designate the position vectors of the points 
at the pick- and the place poses, respectively. Furthermore, the belts 
lie in horizontal, parallel planes. Finally, the objects must observe the 
same attitude with respect to the belt orientation in both the pick
and the place poses. 

5.6 Approximate the cycloidal function of Subsection 5.4 using a peri
odic cubic spline with N subintervals of the same lengths, for various 
values of N between 5 and 100. Tabulate the approximation error eN 

vs. N, with eN defined as 

and 
ei == S(7i) - C(7i) 

in which s( 7) denotes the spline approximation and c( 7) the cycloidal 
function. Note: the cycloidal junction can be decomposed into a linear 
and aperiodie part. 

5.7 From inspection of the plot of the 3-4-5 polynomial and its deriva
tives displayed in Fig. 5.2, it is apparent that the polynomial can be 
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regarded as the superposition of a linear and a periodic function in 
the interval 0 :::; T :::; 1. Approximate the underlying periodic func
tion with a periodic cubic spline by subdividing the above-mentioned 
interval into N equal subintervals, while finding the value of N that 
will yield a maximum absolute value of less than 10-4 in the error in 

(a) the function values; 

(b) the values of the first derivative; and 

(c) the values of the second derivative. 

5.8 Repeat Exercise 5.7 for the 4-5-6-7 polynomial of Fig. 5.3. 

5.9 A pick-and-place operation is being planned that should observe man
ufacturer's bounds on the maximum joint rates delivered by the mo
tors of a given robot. To this end, we have the following choices: (a) 
a 4-5-6-7 polynomial; (b) asymmetrie trapezoidal speed profile like 
that of Fig. 13, with Tl = 0.20; and (c) a cycloidal motion. Which of 
these motions produce the minimum time in which the operation can 
be performed? 

5.10 The maximum speed of a cycloidal motion was found to be 2. By 
noticing that the cycloidal motion is the superposition of a linear 
and a periodic function, find a cubic-spline motion that will yield 
a maximum speed of 1.5, with the characteristics of the cycloidal 
motion at its end points. 

5.11 The acceleration of a certain motion S(T), for 0:::; T :::; 1, is given at 
a sampie of instants { Tk }f" in the form 

Find the cubic spline interpolating the given motion so that its sec
ond time-derivative will attain those given values, while finding A 
such that s(O) = 0 and s(l) = 1. Hint: A eombination of a linear 
function and aperiodie spline ean yield this motion. In order to find 
the function values of the periodie spline, exploit the linear relation 
between the function values and its seeond derivatives at the spline 
supporting points, as diseussed in Seetion 5.6. 

5.12 A robotic joint has been found to require to move, within a time
interval T, with a set of speed values {ih}f" at equally-spaced in
stants. Find the natural cubic spline that interpolates the underlying 
motion so that the angular displacement und ergo ne from beginning to 
end is a given b.B. Hint: You will need to establish the linear relation 
between the spline function values and those of its first derivative. 
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6 Dynamics of Serial Robotic Manipulators 

6.1 The decoupled robot of Fig. 9 is to undergo a maneuver, at the pos
ture displayed in that figure, that involves the velocity and accelera
tion specifications given below, in base coordinates: 

Compute the joint torques required to drive the robot through the de
sired maneuver, if the robot is known to have the inertial parameters 
given below: 

m1 = 10.521, m2 = 15.781, m3 = 8.767, 

m4 = 1.052, m5 = 1.052, m6 = 0.351 

[ -0~54] , [0.140 ] 
p, ~ [ -0:197] P1= P2 = 0 , 

0 

[ -o~oJ p, ~ [ -0:007] , [ 0 ] P4 = P6 = 0 
-0.019 

11 = diag [ 1.6120 0.5091 1.6120 ] 

12 = diag [ 0.4898 8.0783 8.2672] 

13 = diag [ 3.3768 0.3009 3.3768] 

14 = diag [0.1810 0.1810 0.1273] 

15 = diag [0.0735 0.0735 0.1273] 

16 = diag [ 0.0071 0.0071 0.0141] 

where mi, Pi' and li are given in units of Kg, m and Kg m2 , re
spectively, with the position vectors of the mass centers and the 
moment-of-inertia matrices given in link-fixed coordinates. 

6.2 Derive homogeneous, linear constraint equations on the twists of the 
pairs of coupled bodies appearing in Fig. 14, namely, 

(a) two rigid pulleys coupled by an inextensible belt, under no slip; 
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(a) (b) (c) 

FIGURE 14. Three different pairs of coupled bodies. 

(b) the bevel pinion-and-gear train with axes intersecting at an 
arbitrary angle 0:; 

(c) the cam-and-follower mechanism whose cam disk is an eccentric 
circular disko 

Notice that the derived constraint equations should have the 
form: 

Atl +Bt2 = 0 

with tl and t2 denoting the twists of bodies 1 and 2, respectively. 

6.3 Use the expressions derived in Example 6.6.1 with the aid of the 
natural orthogonal complement, as pertaining to the planar manip
ulator of Fig. 6.1, to obtain an expression for the time-derivative of 
the inertia matrix of this manipulator. Compare the expression thus 
obtained with that derived in Example 6.3.1, and verify that the dif
ference i - 2C is skew-symmetric--see Exercise 1O.5-where C is the 
matrix coefficient of the Coriolis and centrifugal terms. 

6.4 A three-revolute spherical wrist with an orthogonal architecture, i.e., 
with neighboring joint axes at right angles, is shown in Fig. 15. As
sume that the moments of inertia of its three links with respect to 
0, the point of concurrency of the three axes, are given by constant 
diagonal matrices, in link-fixed coordinates, as 

14 = diag(J1 , J2 , J3 ) 

15 = diag(K1 , K2 , K3 ) 

16 = diag(LJ , L2 , L 3 ) 

while the potential energy of the wrist is 
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Moreover, the motors produce torques 74,75, and 76, respectively, 
whereas the power losses can be accounted for via a dissipation func
tion of the form 

6 
~ 1.2 C· 

.6. = L)"2MJi +7i IBil) 
4 

where bi and 7P, for i = 4, 5, 6, are constants. 

(a) Derive an expression for the matrix of generalized inertia of the 
wrist. 

(b) Derive an expression for the term of Coriolis and centrifugal 
forces. 

(c) Derive the dynamical model of the wrist. 

Hint: The kinetic energy T 01 a rigid body rotating about a fixed 
point 0 with angular velocity w can be written as T = ~wTlow, 
where 10 is the moment-ol-inertia matrix 01 the body with respect 
to O. 

6.5 Shown in Fig. 16 is a two-revolute pointing manipulator. The cen
troiäal inertia matrices of the links are denoted by 11 and 12 . These 
are given, in link-fixed coordinates, by: 

5 

FIGURE 15. A three-revolute spherical wrist. 
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FIGURE 16. A two-revolute pointing manipulator. 

Moreover, the mass centers ofthe links are denoted by Cl and C2 , re
spectively, and are shown in the same figure, the masses being denoted 
by ml and m2. 

(a) Determine the kinetic energy of the manipulator as a quadratic 
function of fit and iJ2 . 

(b) Determine the 2 x 2 matrix of generalized inertia. 

(c) Find an expression for the time-rate of change of the matrix 
of generalized inertia by straightforward differentiation of the 
expression found in item (b). 

(d) Repeat item (c), but now by differentiation of the three factors 
of I, as given in 

6.6 The twist t i of the ith link of an n-dof serial manipulator can be 
expressed as 

ti = TJJ 

where Ti is a 6 x n twist-shaping matrix and iJ is the n-dimensional 
vector of actuated joint rates. Moreover, let Mi and W i be the 6 x 6 
matrices defined in Section 6.3. Show that if the link is constrained 
to undergo planar motion, then the product TTWiMiTi vanishes. 



www.manaraa.com

6 Dynamics of Serial Robotic Manipulators 479 

FIGURE 17. An RRP spatial manipulator. 

6.7 Devise a recursive algorithm to compute the joint torques required to 
balance a wrench w acting at the EE of a six-revolute manipulator 
of arbitrary architecture. Then, derive the number of floating-point 
operations (multiplications and additions) required to compute these 
torques, and compare your result with the number of floating point 
operations required to compute the same by matrix-times-vector mul
tiplications, using the transpose Jacobian. 

6.8 Establish the computational cost incurred in computing the term of 
Coriolis and centrifugal forces of an n-revolute serial manipulator, 
when the Newton-Euler algorithm is used for this purpose. 

6.9 Shown in Fig. 17 is an RRP manipulator, whose DH parameters are 
displayed in Table 2. The masses of its three moving links are denoted 
by m1, m2, and m3, and the mass center of each of links 1 and 2 
coincides with 0 1 , while the mass center of link 3 is located at P. 
Moreover, the centroidal moments of inertia of these links are, in 
link-fixed coordinates, 

where 1 denotes the 3 x 3 identity matrix. 

(a) Derive the Euler-Lagrange equations of the manipulator under 
the assumption that gravity acts in the direction of Xl. 

(b) Find the generalized inertia matrix of the manipulator. 
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TABLE 2. DH Parameters of the RRP Manipulator 

i ai bi Gi 

1 0 0 90° 
2 0 0 90° 
3 0 b3 0° 

6.10 A link is said to be inertially isotropie if its three principal moments 
of inertia are identical. 

(a) Show that any direction is a principal axis of inertia of an 
inertially isotropie link. 

(b) Explore the advantages of a manipulator with inertially isotropie 
links with regard to its real-time control, i.e., find the savings 
in floating-point operations required to compute the recursive 
Newton-Euler algorithm of such a manipulator. 

6.11 Devise an algorithm similar to Algorithm 6.6.1, but applicable to 
planar manipulators, and determine the computational costs involved 
in its implementation. 

6.12 Write a piece of code to evaluate numerically the inertia matrix of an 
n-axis manipulator and test it with the manipulator ofExample 6.6.l. 
For this purpose, assume that I = ma2 • 

7 Special Topics on Rigid-Body Kinematics 

7.1 The regular tetrahedron of Fig. 7, of unit-Iength edges, moves in such 
a way that vertex P1 has a velo city of unit magnitude directed from 
P1 to P4 , whereas the velo city of P2 is parallel to edge P2P3 • Define a 
coordinate frame X, Y, Z with origin at P1 , Y axis directed from P1 

to the midpoint M of P2 P3 , and X axis in the plane of P1 , P2 , P3 , 

as shown in that figure. With the above information, 

(a) find the velocity of P2 ; 

(b) show that the velocity of P3 cannot be zero; 

(c) if the velo city of P3 lies in the P1P2P3 plane, find that velocity; 

(d) find the angular velo city of the tetrahedron; 

(e) find the set of points of the tetrahedron undergoing a velocity 
of minimum magnitude. 
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7.2 The position vectors of three points of a rigid body, PI, P2, and P3, 
as well as their velocities, PI, P2, and P3, are given below: 

p,~ m, 
p, ~ [J 

(a) Is the motion possible? 

(b) If the motion is possible, find its angular velocity. 

7.3 For matrix P defined as in eq.(7.4), Le., as 

P == [PI - C P2 - C P3 - cl 

where {Pk H are the position vectors of three points of a rigid body, 
while c is that of their centroid, prove that tr(p2 ) = tr2 (p) if and 
only if the three given points are collinear. 

7.4 With matrix P defined as in Exercise 7.3 above, prove that P is 
orthogonal to P, i.e., prove that 

7.5 With the notation of Section 7.3, prove that 

7.6 Derive the velo city and acceleration compatibility conditions for a 
body that is known to undergo spherical motion. 

7.7 The position vectors of three points of a rigid body, Pb P2, and P3, 
are given as in Exercise 7.2, and repeated below for quick reference: 

However, the velocities of these points are all zero, while their accel
erations are given as 



www.manaraa.com

482 Exercises 

(a) Show that the motion is compatible. 

(b) Find the angular acceleration of the body. 

7.8 With the notation of Section 7.2, let 

R:=ppT 

(a) Show that the moment of inertia J of the three given points, 
which is identical to that of a system of unit masses located at 
these points, with respect to the given origin, is 

J = tr(R)l- R 

(b) Show that if the three given points move as points of a rigid body 
undergoing an angular velo city w whose cross-product matrix is 
0, then 

(c) Furthermore, show that ifunder the conditions ofitem (b) above, 
the set of points undergoes an angular acceleration W of cross
product matrix n, then 

j = nJ - Jn + 0 2 J + J02 - 20JO 

7.9 A wrench of unknown force fis applied to a rigid body. In order to 
find this force, its moment with respect to a set of points {Pk H, 
of position vectors {Pk H, is measured and stored in the set { nk H. 
Show that f can be calculated from the relation 

Df = -vect(M) 

with D defined as in Section 7.2, i.e., as 

1 
D:= 2[tr(P)1 - P] 

and M given by 

M = [ni - n n2 - n n3 - n], 

Note that P is defined in Exercise 7.3. 

1 3 
n:= - Lnk 

3 1 

7.10 A wrench is applied to the tetrahedron of Fig. 7. When the force of 
this wrench acts at point Pk , the resulting moment is nk, for k = 
1,2,3. For the data displayed below, in frame F of that figure, find 
the resultant force f, as well as the line of action of this force that will 
lead to a moment of minimum magnitude. Determine this moment. 

n3 = - 2V6 1 [3J2] 
12 -2)3 
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8 Kinematics of Complex Robotic Mechanical 
Systems 

8.1 For the parallel manipulator of Fig. 8.7, find the matrix mapping 
joint forces into wrenches acting on the moving platform, if actuation 
is supplied through the prismatic joints. 

8.2 We refer to the rolling robot with conventional wheels introduced in 
Subsection 8.6.1. We would like to study the equivalent concept of 
manipulability, whieh here we can call maneuverability. This concept 
refers to the numerieal conditioning of the two underlying Jacobian 
matrices, J and K, as defined in eqs.(8.88a & b). Clearly, J is isotropie 
and hence, optimally conditioned. In attempting to determine the 
condition number of K, however, we need to order its singular values 
from smallest to largest. 

(a) Show that the two singular values of Kare al = l/r and a2 = 
2/r. Obviously, an ordering from smallest to largest is impossible 
because of the lack of dimensional homogeneity. 

(b) In order to cope with the dimensional inhomogeneity of matrix 
K, we introduce the characteristic length L, which we define 
below. First, we redefine the Jacobian K in dimensionless form 
as 

K [(l/r) 
~ 0 

OT ] 
(2L/r)jT 

Now, L is the value that minimizes the condition number of the 
dimensionless K. Show that this value is l/2 and that it pro duces 
a condition number of unity. 

8.3 Find an expression for the angular velo city ~i of the active roller 
of the ith wheel of the robot with Mekanum wheels introduced in 
Subsection 8.6.2. 

8.4 We refer again to the robot with Mekanum wheels introduced in Sub
section 8.6.2. For the case of a three-wheeled robot of this kind, we 
consider here a design whereby the wheels are equally spaced in a ß
array. In this array, the centers of the hubs, Gi, lie at the corners of 
an equilateral triangle of side a; moreover, we ass urne that Cl!i = 90°, 
for i = 1, 2, 3. Under these conditions, find the characteristic length 
L of the robot that renders K, as defined in the above-mentioned 
subsection, dimensionless and of a minimum condition number. Find 
this minimum as weIl. 

8.5 Find the value of 'IjJ at whieh the rolling robot of Fig. 8.22 attains 
a singular configuration. Here, a singularity is understood as a loss 



www.manaraa.com

484 Exercises 

of maneuverability in the sense of not being able to drive the unac
tuated joints by means of the actuated ones. Discuss whether under 
reasonable values of the geometrie parameters, this singularity can 
occur. 

8.6 Determine the architecture and the "posture," Le., the values of the. 
relevant joint variables of the rolling robot of Fig. 8.22 that will render 
matrix e isotropie, where e represents the mapping of actuated 
joint rates into unactuated ones. Is kinematic isotropy, in this sense, 
kinematieally possible? 

8.7 Find a relation among the geometrie parameters of the robot of 
Fig. 8.22 that will allow the steering of the robot along a straight 
course with the highest possible maneuverability in the sense defined 
in Exercise 7.5. That is, find a relation among the geometrie param
eters of this robot that will render K( e) a minimum along a straight 
course. 

8.8 Find the value of 1/1 under whieh the robot of Fig. 8.22 performs a ma
neuver that leaves the midpoint of segment 0 10 2 stationary. Under 
this maneuver, state a relationship among the geometric parameters 
of the robot that minimizes K(8). 

8.9 Upon inversion, eq.(8.98a) yields 

Ba = UBu 

(a) Find U. 

(b) The above equation can be written as 
. . . _ T' 

01 = U1303 + Ul.p1/1 = Ul 6a 
. . . T' 
O2 = U2303 + U2.p1/1 == U2 6a 

The first of the above equations can be integrated if Ub which 
is an implicit function of 03 and 1/1, is the gradient with respect 
to 6u == [03 1/1]T of a scalar function U1(03,1/1). Likewise, the 
second of the above equations can be integrated if a function 
U2(03,1/1) exists, whose gradient with respect to 6u is U2. Fur
ther, upon recalling Schwartz's Theorem of multivariable calcu
lus, Ui is such a gradient if and only if V'Ui, Le., the Hessian 
matrix of Ui with respect to 6u , is symmetrie, for i = 1,2. 
Show that the above-mentioned Hessians, for the case at hand, 
are nonsymmetrie, and hence, none of the above differential 
expressions is integrable. Such expressions are called nonholo
nomic. 

Note: To be sure, the above condition is sufficient, but not nec
essary. It is possible that some individual equations of a system 
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of differential expressions, also called Pfaffian forms, are not in
tegrable while the overall system iso An examination of necessary 
and sufficient condition for integrability falls beyond the scope 
of this book. Such conditions are best understood with the aid 
of the Frobenius Theorem (De Luca and Oriolo, 1995). 

8.10 For the rolling robot with omnidirectional wheels introduced in Sec
tion 8.6.2, with a ~-array, as described in Exercise 4, show that the 
equation yielding the angular velo city of the platform in terms of the 
wheel rates is integrable, but the equations yielding the velocity of 
the operation point are not. 

8.11 A holonomic rolling robot. The robot described in Exercise 8.10 
can be rendered holonomic at the expense of one degree of freedom. 
Show that if the three wheel rates are coordinated, either mechani
cally or electronically so that 

ih +Ö2 + Ö3 = 0 

then the platform is constrained to move under pure translation. Un
der this condition, the robot is holonomic. Find an explicit expression 
for the position vector c of the operation point in terms of the wheel 
angles. 

9 Trajectory Planning: Continuous-Path 
Operations 

9.1 A PUMA 560 robot, with the DH parameters of Table 3, is used to 
perform an arc-welding operation as indicated below: An electrode is 
rigidly attached to the gripper of the robot. The tip of the electrode, 
point P, is to trace a helicoidal path at a constant rate of 50 mm/s. 
Moreover, the center of the wrist is located at a point C, fixed to a 
Frenet-Serret coordinate frame. In this frame, the coordinates of C 

TABLE 3. D-H Parameters of a PUMA 560 Robot 

Joint i ai (deg) ai (m) bi (m) 
1 90 0 0.660 
2 0 0.432 0 
3 90 0.020 0.149 
4 90 0 0.432 
5 90 0 0 
6 0 0 0.056 
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are (0, -50, 86.7) mm. Moreover, the path to be traced by point P 
is given as 

x = acosB, y = asinB, z = bB, O:S: B:S: 7f/2 

with the values a = 300 mm, b = 800/7f mm. 

(a) Decide where to locate the robot base with respect to the path 
so that the latter willlie well within the workspace of the robot. 
Then, produce plots of ()i vs. t, for 0 :s: t :s: T, where T is the 
time it takes to traverse the whole trajectory, for i = 1,2, ... ,6. 

(b) Produce plots of ih vs. t in the same time interval for all six 
joints. 

(c) Produce plots of Bi vs. t in the same time interval for all six 
joints. 

9.2 A bracket for spot-welding, shown in Fig. 18, is rigidly attached to the 
end-effector of a robotic manipulator. It is desired that point P of the 
bracket follow a helicoidal path r, while keeping the orient at ion of 
the bracket with respect to r as indicated below: Let B == {io,jo, ko} 
and :F7 == {i7,j7, k 7} be triads of unit orthogonal vectors fixed to 
the base of the robot and to the bracket, respectively. Moreover, let 
:F == {et, en , eb} be the Frenet-Serret triad of r, given as 

et = -0.6 sin epio + 0.6 cos epjo + 0.8ko 
e n = - cos epio - sin epjo 

eb = 0.8 sin epio - 0.8 cos epjo + 0.6ko 

where ep is a given function of time, ep(t). 

Furthermore, the orientation of the bracket with respect to r is to 
be kept constant and given in terms of the Frenet-Serret triad as 

i 7 = 0.933et + 0.067en - 0.354eb 

h = 0.067et + 0.933en + 0.354eb 

k 7 = 0.354et - 0.354en + 0.866eb 

Additionally, Rand S(t) denote the rotation matrices defining the 
orientation of :F7 with respect to :F and of :F with respect to B, 
respectively. 

(a) Find the matrix representation of S(t) in B. 

(b) Find the matrix representation of R in :F. 

(c) Let Q(t) denote the orientation of :F7 with respect to B. Find 
its matrix representation in B. 
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en, r 

j7~\ 

(d) 

FIGURE 18. A bracket for spot-welding. 

Find the Darboux vector 6 of the path, along with its time
derivative, 6, in base-fixed coordinates. Note: You can do this 
in several ways, as discussed in Section 9.2. Choose the one 
that will allow you to use previously computed results, thereby 
simplijying the computations. 

9.3 The parametric equations of a curve are given as 

x = 2t, Y = t 2 , z = t3 /3 

where t is time. A robotic manipulator is to follow this trajectory 
so that its gripper keeps a constant orientation with respect to the 
Frenet-Serret frame of the curve. 

(a) Determine the unit vector parallel to the axis of rotation and 
the angle of rotation of the gripper as functions of time. 

(b) Find the angular velocity and angular acceleration of the gripper 
as functions of time. 

9.4 Find the spline approximation of the helix of Example 9.3.1. Then, 
plot the approximation errors of the Cartesian coordinates of points 
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of the helix, for N = 5, 11, and 21 equally spaced supporting points. 
In order to assess the orientation error, compute the Darboux vectors 
ofthe spline, Os, and ofthe helix, 0h. The approximation error ofthe 
orientation is now defined as 

with cp defined as in Example 9.3.1. 

9.5 Find the spline approximation of the curvature, torsion, and Darboux 
vector of the curve introduced in Example 9.3.2. Find express ions for 
the exact values of these variables and plot the approximation errors, 
for 5, 10, and 20 equally spaced supporting points vs. cp. In the error 
definitions given below, subscript e indicates exact value, subscript s, 
spline value: 

e,.. == ~s(cp) - ~e(CP) 

er == Ts(cp) - Te(cp) 

e/j == II0s(cp) - Oe(CP) II 

9.6 From the plots of the time-histories of the joint angles calculated in 
Example 9.5.1, it is apparent that, with the exception of (}4, which 
has a linear component, these histories are periodic. Repeat Exam
pIe 9.5.1, but now using a spline approximation of the weIding seam, 
with N = 5, 10, and 20 supporting points. With this spline approxi
mation, calcuIate the pose, the twist, and the twist-rate at each sup
porting point. Now, calculate values of 8, Ö, and iJ at each of these 
supporting points by means of inverse kinematics. Compare the val
ues thus obtained of iJ with those derived from the linear relation 
between the function values and the values of its second derivative 
at the supporting points when using a cubic spline. Tabulate the 
Euclidean norm of the errors vs. N. 

9.7 The decoupled robot of Fig. 9 is to perform an arc-welding operation 
along a welding seam that requires its wrist center C to travel at a 
constant speed of 1 m/s along a line joining points A and B, not 
shown in that figure, while keeping the EE holding the electrode at 
a constant orientation with respect to the base frame. Moreover, the 
seam is to be traversed according to the following schedule: With 
point C located at a point A' on the extension of AB, a distance 
of 250 mm from A, point C approaches A with a cycloidal motion 
at the specified speed; upon reaching B, point C decelerates with 
a cycloidal motion as weIl, until it reaches a point B' in the other 
extension of AB, 250 mm from B, with zero speed. The position 
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vectors of points A and B, denoted by a and b, respectively, are 
given, in base coordinates, as 

[ 
500 ] 

a = -500 , 
500 

[
1, 200] 

b= 0 
1,200 

in mm. For the above-given data, find the time-histories of all joint 
variables. 

10 Dynamics of Complex Robotic Mechanical 
Systems 

10.1 Find the conditions under which the three-wheeled robot with om
nidirectional wheels analyzed in Subsection 10.5.2 has an isotropie 
inertia matrix. Discuss the advantages of such an inertially-isotropic 
robot. 

10.2 Establish the conditions on the actuated joint rates under which the 
three-wheeled robot with omnidirectional wheels of Subsection 10.5.2 
undergoes pure translation. Under these conditions, the robot has 
only two degrees of freedom and, hence, a 2 x 2 inertia matrix. Derive 
an expression for its inertia matrix. Hint: The constmint for pure 
tmnslation can be written as 

and hence, if the 3 x 2 matrix L is an orthogonal complement of a, 
i.e., ifaTL = oL where O2 is the 2-dimensional zero vector, then the 
underlying Euler-Lagmnge equations of the constmined system can be 
derived by multiplying the two sides of the mathematical model found 
in Subsection 10.5.2 by LT : 

Further, upon writing {Ja as a linear tmnsformation of a 2-dimensional 
vector U, namely, as 

we obtain 

and hence, the genemlized inertia matrix under pure tmnslation is 
LTIL. 
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10.3 Derive the mathematical model governing the motion of a 2-dof rolling 
robot with conventional wheels, similar to that of Fig. 8.22, but with 
two caster wheels instead. The vertical axes of the caster wheels are 
a distance l apart and a distance a + b from the common axis of the 
driving wheels. What is the characteristic length of this robot? 

10.4 Show that the mathematical model of an arbitrary robotic mechanical 
system, whether holonomic or nonholonomic, with r rigid bodies and 
n degrees of freedom, can be cast in the general form 

where 

(J: the m-dimensional vector of variables associated with all joints, 
actuated and unactuated; 

Oa: the n-dimensional vector of actuated joint variables, n :S m; 

TA: the n-dimensional vector of actuator torques; 

T the n-dimensional vector of gravity torques; 

15: the n-dimensional vector of dissipative torques; 

I((J): the n x n matrix of generalized inertia; 

C((J,Oa): the n x n matrix of Coriolis and centrifugal forces; 

with I((J) and C((J,Oa) given by 

I((J) == TTMT 

C((J,Oa) == TTMT + ~(WM - MW)T 

in which 

M: the 6r x 6r matrix of system mass; 

T: the n x 6r twist-shaping matrix that maps the n-dimensional 
vector of actuated joint rates into the 6r-dimensional vector of 
system twist t; 

W: the 6r x 6r matrix of system angular velo city. 

10.5 For the system of Exercise 10.4, show that the matrix differertce 
i((J,Oa) - 2C((J, Oa) is skew-symmetric. This is a well-known result 
for serial manipulators (Spong and Vidyasagar, 1989). 

10.6 For the rolling robot with conventional wheels of Subsection 10.5.1, 
find the generalized inertia matrix of the robot und er the maneuvers 
described below: 

(a) pure translation; 
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(b) midpoint of segment 0 10 2 stationary. 

In each case, give a physical interpretation of the matrix thus ob
tained. 

10.7 With reference to the same robot of Exercise 10.6, state the conditions 
on its geometric parameters that yield I w and Ip isotropic, these two 
2 x 2 matrices having been defined in Subsection 10.5.1. 

10.8 Find the maneuver(s) under which the Coriolis and centrifugal forces 
of the robot analyzed in Subsection 10.5.2 vanish. Note that in gen
eral, these forces do not vanish, even though the generalized inertia 
matrix of the robot is constant. 

10.9 Find the eigenvalues and eigenvectors of the matrix of generalized 
inertia of the 3-dof rolling robot with omnidirectional wheels analyzed 
in Subsection 10.5.2. 

10.10 The Euler-Lagrange equations derived for holonomic mechanical sys
tems in Section 10.3, termed the Euler-Lagrange equations of the sec
ond kind, require that the generalized coordinates describing the sys
tem be independent. In nonholonomic mechanical systems, a set of 
kinematic constraints is not integrable, which prevents us from solv
ing for dependent from independent generalized coordinates, the ap
plication of the Euler-Lagrange equations as described in that section 
thus not being possible. However, dependent generalized coordinates 
can be used if the Euler-Lagrange equations of the first kind are re
called. To this end, we let q be the m-dimensional vector of dependent 
generalized coordinates that are subject to p differential constraints 
of the form 

A(q)q = b(q, t) 

where A is a p x n matrix of constraints and b is a p-dimensional vec
tor depending on the configuration q and, possibly, on time explicitly. 
When b does not contain t explicitly, the constraints are termed scle
ronomic; otherwise, rheonomic. Furthermore, let n == m - p be the 
degree of freedom of the system. The Euler-Lagrange equations of the 
first kind of the system at hand take on the form 

where .x is a p-dimensional vector of Lagrange multipliers that are 
chosen so as to satisfy the kinematic constraints. Thus, we regard 
the m dependent generalized coordinates grouped in vector q as 
independent, their constraints giving rise to the constraint forces 
AT.x. 
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Use the Euler-Lagrange equations of the first kind to set up the 
mathematical model of the rolling robot with omnidirectional wheels 
studied in Subsection 10.5.1. 
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Appendix A, 429 
Appendix B, 437 
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architecture of a manipulator, 109 
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artificial intelligence, 4, 448 
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C++,448 
canonical form of a rotation, 33 
Carausius morosus, 15, 497 
Cartesian coordinates of a 

manipulator, 114 
Cartesian decomposition, 34 
caster wheel, 346 
catastatic systems, 395 
Cayley-Hamilton theorem, 28 
Cayley's theorem, 450 
change of basis, 58 
characteristic equation, 25, 28, 122 
characteristic length, 183 
characteristic polynomial, 155, 291 



www.manaraa.com

506 Index 
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Mozzi-Chasles' theorem) 
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Cholesky-decomposition algorithm, 

249, 265 
closure equations of a manipulator, 

116 
compatibility conditions 

for acceleration, 283 
for velo city, 279 

composite rigid-body method, 247 
composition of reflections and 

rotations, 47 
condition number, 177, 303 
configuration of a manipulator, 109 
continuous path, 192 

operations, 354 
tracking, 380 

control vector, 268 
co ordinate transformation, 48-53 
CP (see continuous path) 
Coriolis acceleration, 95 
Coriolis and centrifugal forces, 240, 

247 
Couette flow, 272 
Coulomb 

dissipation function, 273 
friction, 273 

cross-product matrix, 30 
curvature, 357 

derivative w. r. t. a parameter, 
363 

derivative w. r. t. the arc length, 
357 

parametric representation, 363, 
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time-derivative, 360 
cycloidal motion, 201 

Darboux vector, 360 
time-derivative, 360 

decoupled manipulators, 118 
delta-array (ß-array), 419, 485 
Delta robot, 10 
Denavit-Hartenberg 

frames,107 
notation, 107 
parameters, 109 

rotation matrix, 111, 115 
vector joining two frame origins, 

112, 115 
dexterity, 448 

measures (see kinetostatic 
performance indices) 

dextrous hands (see multifingered 
hands) 

dextrous workspace, 174 
dialytic elimination, 157, 468 
DH (see Denavit-Hartenberg) 
DIESTRO manipulator, 188, 305, 

307 
inverse kinematics, 305 
Jacobian, 465 

differentiation with respect to 
vectors,29 

direct kinematics problem of 
parallel manipulators, 317 

displacement equations of a 
manipulator, 116 

dissipation function, 217, 272 
dynamic systems, 1 
dynamics 

of holonomic systems, 394, 395 
of multibody systems, 215 
of parallel manipulators, 398 
of rigid bodies, 100 
of robotic mechanical systems, 

393 
of rolling robots, 409 
of serial manipulators, 213 

EE (see end-effector) 
end-effector, 107 
Euclidean norm, 30 
Euler 

angles, 46, 451 
equation (for graphs), 399 
equation (in mechanics), 102 
parameters (see Euler-Rodrigues 

parameters) 
Euler-Lagrange equations, 216 

derived with the NOC, 240, 398 
Euler-Rodrigues parameters, 44 
Euler's 

theorem, 27 
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Fanuc Arc Mate robot 
characteristie length, 190 
DH parameters, 189 
inverse kinematics, 304 
KCI,190 

First Law of Thermodynamies, 163 
flight simulator, 9, 318 
floating-point operation, 161, 247, 

448 
flop (see floating-point operation) 
forward dynamics 

of serial manipulators, 246 
algorithm (using the NOC), 264 
algorithm complexity, 264 

Frenet (see Frenet-Serret) 
Frenet-Serret 

frame, 356 
formulas, 357 
vectors, 357 

frietion forces, 217, 240, 271 
fuzzy logie, 448 

Genealogy of robotie mechanieal 
systems, 3, 4 

generalized coordinates, 394 
generalized forces, 216, 418, 428 
generalized inertia matrix, 219 

Cholesky decomposition, 249 
factoring, 249 
time-rate of change, 219, 222 

generalized speeds, 217, 395 
gluing operation, 365 
grasping matrix, 338 
gravity 

terms, 236, 270 
wrench,252 

Hand-eye calibration, 68 
Hexa robot, 10 
holonomie systems, 393, 395 
homeomorphism, 21 
homogeneous coordinates, 54 
homotopy, 291 
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IKP (see inverse kinematics 
problem) 

Index, 505 
input, 1, 237 
inertia dyad, 103, 215 
instant-screw axis, 85 
instrument calibration, 66 
intelligent machines, 3, 448 
intelligent robot, 3 
invariance, 63 
inverse dynamics 

of serial manipulators, 213 
recursive, 225 

inverse kinematics problem 
of a decoupled manipulator, 118 
of a general 6R manipulator, 290 
of parallel manipulators, 317 

inverse vs. forward dynamies, 213 
inward recursions, 232, 234 
ISA (see instant-screw axis) 
isomorphism, 25 
isotropie 

manipulator, 179 
matrix, 176 

isotropy, 176 
iteration, 381, 448 

Jacobian matrix 
condition number, 175 
evaluation, 147 
invertibility, 175 
of decoupled manipulators, 145 
of serial manipulators, 142 
transfer formula, 145 

joint 
coordinates, 105, 109 
parameters,. 109 
variables, 109 

Kane's method, 237 
KCI (see kinematic conditioning 

index) 
kerne I of a linear transformation, 21 
Kinemate, 89 
kinematic 

chain, 106 
conditioning index, 178 



www.manaraa.com

508 Index 

constraints, 237 
constraints for serial 

manipulators, 242 
pair, 106 

kinetostatic performance indices, 
174 

Lee's manipulator, 307 
Lee's procedure, 310 
Lee vs. Li, 295 
left hand, 10 
Li vs. Lee (see Lee vs. Li) 
Li's manipulator (see Lee's 

manipulator) 
linear invariants, 34 

of a rotation, 35 
linear transformations, 20 
local structure of a manipulator, 

109 
lower kinematic pair, 106 
LU decomposition, 143 

Machine (definition of), 447 
main gauche (see left hand) 
maneuverability, 483 
manipulability, 174 

of decoupled manipulators, 471 
manipulator 

angular velo city matrix, 218 
dynamics, 213, 393 
kinematics, 105 
mass matrix, 218 
twist, 218 
wrenches, 218 

matrix representation, 24 
mechanical system, 1 
mechatronics, 448 
minimum-time trajectory, 241 
moment invariants, 64 
moment of a line 

about a point, 77 
about another line, 458 

moment of inertia, 102 
momentum screw, 103 
motor, 89 
Mozzi-Chasles' theorem, 73 
MSS, 5 

multibody system 
dynamics, 215 
Euler-Lagrange equations, 216 

multicubic expression, 117 
multifingered hands, 11, 336 
multilinear expression, 117 
multiquadratic expression, 117 
multiquartic expression, 117 

Natural orthogonal complement, 
236 

applied to holonomic systems, 
395 

applied to parallel manipulators, 
398 

applied to planar manipulators, 
251 

applied to rolling robots, 409 
Newton 

equations, 102 
-Euler algorithm, 225 
methods, 291, 381 
-Raphson method, 69, 381 

NOC (see natural orthogonal 
complement) 

nonholonomic systems, 214, 394 
noninertial base link, 246 
normal component of a vector, 23 
nullspace of a linear transformation, 

21 
numerical conditioning, 303 

Object-oriented programming, 448 
Odetics series of hexapods, 15 
ODW (see omnidirectional wheels) 
off-line, 4, 122, 148 
omnidirectional wheels, 17 

dynamics, 419 
kinematics, 350 

on-line, 448 
operation point, 109 
orientation problem, 134 
orthogonal complement, 239 
orthogonal decomposition of a 

vector, 23 
orthogonal decoupled manipulator, 

126 



www.manaraa.com

orthogonal projection, 21 
orthogonal RRR manipulator 

dynamics, 255 
inverse kinematics, 130, 133 
recursive dynamics, 260 
workspace, 155 

OSU ASV, 15 
OSU hexapod, 15 
outward recursions, 226 

Pappus-Guldinus theorems, 469 
parallel axes, theorem of, 102 
parallel manipulators, 8 

acceleration analysis, 331 
dynamics, 398 
kinematics, 315 
velocity analysis, 329 

parametric 
path representation, 362 
representation of curvature, 363 
representation of curvature 

derivative, 363 
representation of torsion, 363 
representation of torsion 

derivative, 363 
splines, 375 

path-tracking for arc-welding, 386 
pick-and-place operations, 191 
planar manipulators, 164 

acceleration analysis, 171 
displacement analysis, 165 
dynamics, 251 
static analysis, 173 
velocity analysis, 168 

platform manipulators, 8, 315, 399 
Plücker coordinates (of a line), 76 

transfer formula, 78, 79 
polar-decomposition theorem, 175 
polynomial interpolation 

with 3-4-5 polynomial, 195 
with 4-5-6-7 polynomial, 198 

pose (of a rigid body), 80 
array,80 

positioning problem, 119 
posture of a manipulator, 109 
PPO (see pick-and-place 

operations) 
Principle of Virtual Work, 163 

Index 509 

prismatic pair, 106, 142, 227 
programmable robot, 4 
projection, 21 
Puma robot, 108, 126 

DH parameters, 109 
inverse kinematics, 126 
workspace, 155 

pure reflection, 22 

Quaternions, 46 

Raghavan and Roth's procedure, 
308 

range of a linear transformation, 
21,449 

Rayleigh dissipation function (see 
dissipation function) 

real time, 213, 448 
reciprocal bases, 68, 146, 408 
redundant sensing, 66 
reflection, 22, 25, 295 

composition with rotations, 47 
regional structure of a manipulator, 

109 
revolute pair, 106 
rheonomic systems, 394 
robotic hands, 11 

statics, 336 
robotic mechanical system, viii, 3 
robotic system, 2 
Rodrigues (see Euler-Rodrigues) 

vector,451 
rolling robots, 16 

dynamics, 409 
kinematics, 345 

rotations, 25 
rotation matrix, 30 

exponential representation, 32 
RVS, xiii, 193, 368 
run-time, 448 
Runge-Kutta method, 269 

Scleronomic systems, 394 
screw 

amplitude, 74, 85, 98 
axis, 74, 85, 97 
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510 Index 

axis coordinates, 89, 98 
motion, 74 
pitch, 74, 85, 97 
ray coordinates, 89 

semigraphical solution of the 
general IKP, 292 

serial manipulators, 6 
acceleration, 158 
dynamics, 213 
kinematics, 105 
statics, 162, 173 
velo city analysis, 139 
workspace, 155 

service angle, 174 
similarity transformations, 58 
simulation, 268 
singular-value decomposition, 69, 

176 
singular values, 176 
singularity analysis of decoupled 

manipulators, 151 
SPDM,5 
spherical wrist, 118, 134 

workspace, 136 
spline(s), 205 

natural, 209 
nonparametric, 205, 375 
parametric, 375 
periodic, 209 
interpolation of 4-5-6-7 

polynomial, 210 
square root of a matrix, 44 
Star robot, 10 
state 

variable, 1, 268 
-variable equations, 268 
-variable model of platform 

manipulators, 405 
vector, 268 

static analysis 
of rigid bodies, 95 
of serial manipulators, 162, 173 

Stewart platform (see 
Stewart-Gough platform) 

Stewart-Gough platform, x, 318 
direct kinematics, 320 
leg kinematics, 318 

structure of mechanical systems, 2 
structured environment. 3 

Sutherland, Sprout & Assoc. 
Hexapod,15 

system, 1 

Telemanipulators, 5 
tensors, 19, 215, 237 
Titan series of quadrapeds, 15 
torsion, 357 

derivative w. r. t. the arc length, 
357 

parametric representation, 363, 
365 

time-derivative, 360 
trace of a square matrix, 34 
trajectories with via poses, 203 
trajectory planning, 191, 355 
trapezoidal velo city profile, 471 
truncation error, 269 
Trussarm, 10 
TU Munich Hand, 12 
TU Munich Hexapod, 15 
twist 

of a rigid body, 88 
transfer formula, 91 

twist-shape relations, 239 
for serial manipulators, 242 

Unimodular group (of matrices), 79 
unstructured environment, 3 
upper kinematic pair, 106 

Vector of a 3 x 3 matrix, 34 
vector space, 20 
velo city analysis 

of parallel manipulators, 329 
of rolling robots, 345 
of serial manipulators, 139 

via poses, 203 
virtual work (see Principle of 

Virtual Work) 
viscosity coefficient, 272 
viscous forces, 248, 271 

Walking machines, 14 
kinematics, 341 
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leg architecture, 342 
walking stick, 15 
workspace of positioning 

manipulators, 155 
wrench 

acting on a rigid body, 95 
axis, 97 
pitch,97 
transfer formula, 99 
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